2017年08月04日

本日配信のメルマガ。2016年センター数学2B第4問 空間のベクトル

本日配信のメルマガでは、2016年大学入試センター試験数学2B第4問を解説します。

■ 問題

第4問
              →     →   →
 四面体OABCにおいて、|OA|=3,|OB|=|OC|=2,
∠AOB=∠BOC=∠COA=60°であるとする。また、辺OA上に点Pを
                  →  →  →  →  →  →
とり、辺BC上に点Qをとる。以下、OA=a,OB=b,OC=cとおく。

                             →   →
(1) 0≦s≦1,0≦t≦1であるような実数s,tを用いてOP=sa,
→      →  →    → → → →    → →
OQ=(1−t)b+tcと表す。a・b=a・c=[ア],b・c=[イ]である
ことから
   →
  |PQ|^2=([ウ]s−[エ])^2+([オ]t−[カ])^2+[キ]
           →
となる。したがって、|PQ|が最小となるのはs=[ク]/[ケ],t=[コ]/[サ]の
           →
ときであり、このとき|PQ|=√[シ]となる。

                  →
(2) 三角形ABCの重心をGとする。|PQ|=√[シ]のとき、三角形GPQの
面積を求めよう。
  →  →
 OA・PQ=[ス]から、∠APQ=[セソ]°である。したがって、
三角形APQの面積は√[タ]である。また
   →        →        →
  OG=([チ]/[ツ])OA+([テ]/[ト])OQ

であり、点Gは線分AQを[ナ]:1に内分する点である。

 以上のことから、三角形GPQの面積は√[ニ]/[ヌ]である。


※分数は(分子)/(分母)、xの2乗はx^2で、ベクトルの矢印は一部省略、
マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

AE個別学習室(えまじゅく)/プロ家庭教師の江間は、生徒募集をしています。
2018年の入試に向けて、そろそろ家庭教師・個別指導を始めてみませんか?

・茨城中学、江戸川取手中学などの私立中学入試対策
・日立一付属、並木、古河中学などの公立中高一貫校の適性検査対策
・茨城県、千葉県、東京都などの公立・私立高校入試対策
・大学入試センター試験対策
・国公立、私立を問わず、全国各地の大学入試対策
・社会人の専門学校、大学への再入学のサポート
・英検・漢検・数検、TOEIC、公務員試験など各種資格試験対策

などなど、様々なレベル・目的に対応可能です。夏期講習のお申し込みも
受付中です!まずはお気軽にお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 素早くやり方を見抜くのが大切
 ◆2 散布図で相関関係を読み取る
 ◆3 四分位数は4つに分ける数


(以下略)


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

AE個別学習室(えまじゅく)代表/プロ家庭教師の江間は、今のところ書籍を
10冊出しています。全て実際に授業で使用して、好評を得ています。

「やりなおしの中学英語を完成させる本」(総合科学出版)

「プロ家庭教師/翻訳者が教える『秘密の』中学英文法練習帳」
「プロ家庭教師・翻訳者が教える『最重要ポイントだけ』高校英文法問題集」
(前編・後編)
「10秒でわかる!高校数学1A『2次関数』の考え方」
「10秒でわかる!高校数学1A『三角比』の考え方」
「10秒でわかる!高校数学1A『命題と集合、データの分析』の考え方」
「10秒でわかる!高校数学1A『場合の数・確率』の考え方」
「解き方の『なぜ』がわかるセンター数学1A2B2017年版」
「10秒でわかる!高校数学3『微分』基本問題の考え方」(新刊)

下の9冊は電子書籍です。

全てアマゾンにて販売中です。
紙の書籍は全国書店やその他のオンラインショップでも販売中です。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

(◆1は省略します)


 ◆2 内積はベクトルのかけ算

では、まず最初の設問です。
→ → → →    → →
a・b=a・c=[ア],b・c=[イ]を聞いています。

これはベクトルの内積ですね。
内積は、つまりはベクトルのかけ算で、ベクトルは大きさだけでなく方向の情報も
もつ数量なので、かけ算をするときには方向の情報も加味しなければいけません。
2つのベクトルのなす角をθとして、次のように計算します。
  → →  → →
★ a・b=|a||b|cosθ

「片方のベクトルをもう一方のベクトルに投影して掛ける」と理解できます。

まあ、とにかく「絶対値の積にコサインを掛ける」と覚えておけば大丈夫!
→ →  → →
a・b=|a||b|cos60°=3×2×(1/2)=3
a・c=|a||c|cos60°=3×2×(1/2)=3
b・c=|b||c|cos60°=2×2×(1/2)=2

よって、[ア]=3,[イ]=2


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆3 ベクトルの差は終点ひく始点
   →
次は|PQ|^2の値です。
      →   →  →      →  →
問題文で、OP=sa,OQ=(1−t)b+tcとおいています。
           →  →  →
ベクトルの差より、★PQ=OQ−OPなので・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。
posted by えま at 12:13| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:40
職業:家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN