2019年07月09日

高校数学「円の方程式」「平方完成」

高校数学「円の方程式」「平方完成」

方程式x^2+y^2−6x−4y−12=0はどのような図形を表すか。

xも2乗、yも2乗の場合は、円を表します。
円の場合は、中心と半径を求めて、「中心(a,b),半径rの円」のように答えます。

式は、(x−a)^2+(y−b)^2=r^2の形になります。
この形のとき、中心(a,b),半径rですね。

今回の問題では、中心と半径はそのままではわからないので、この「わかる形」にします。
かっこの2乗なので、いわゆる「平方完成」をすればOKですね!

        (x^2−6x)+(y^2−4y)−12=0
(x^2−6x+9)−9+(y^2−4y+4)−4−12=0
             (x−3)^2+(y−2)^2=25
             (x−3)^2+(y−2)^2=5^2

よって、中心(3,2),半径5の円


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
         無断転載等はご遠慮ください。(c)江間淳


ラベル:数学
posted by えま at 21:42| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

解答★高校数学意外と解けない?問題 数学2B「ベクトル」

解答★高校数学意外と解けない?問題 数学2B「ベクトル」

|→a|=√3,|→b|=2で、→aと→bのなす角が30°であるとき、次の問いに答えよ。

(1) →a・→bを求めよ。

ベクトルの内積は次の公式で計算することができます。

→a・→b=|→a||→b|・cosθ

これに、|→a|=√3,|→b|=2、θ=30°を代入して

→a・→b
=√3×2・cos30°
=2√3×√3/2
=3

ちなみに、ベクトルの内積はスカラーになることを覚えておくと良いと思います。


(2) |3(→a)−(→b)|を求めよ。

合成されたベクトルの値を求めるためには、まずは2乗するとうまくいくことが多いです。
ベクトルは2乗するとスカラーになり、内積もスカラーになるからです。
計算は基本的に普通の文字式と同じやり方でできます。すなわち、普通に2乗の展開などをやることができますね!
やってみましょう!

|3(→a)−(→b)|^2
=9|→a|^2ー6(→a・→b)+|→b|^2
=9・(√3)^2−6・3+2^2
=27ー18+4
=13

2乗した値が13なので、求める値は√13


このコーナーでは、「基本だし、わかれば難しくないけど、意外と解けない人が多い問題」を中心に掲載していきます。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
         無断転載等はご遠慮ください。(c)江間淳


posted by えま at 16:14| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2019年センター数学第5問[イ]

本日配信のメルマガでは、2019年大学入試センター試験数学1A第5問を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2019年センター試験数1Aより

第5問

 △ABCにおいて、AB=4,BC=7,CA=5とする。
このとき、cos∠BAC=−1/5,sin∠BAC=2√6/5である。

 △ABCの内接円の半径は√[ア]/[イ]である。

 この内接円と辺ABとの接点をD,辺ACとの接点をEとする。

  AD=[ウ],DE=[エ]√[オカ]/[キ]

である。

 線分BEと線分CDの交点をP,直線APと辺BCの交点をQとする。

  BQ/CQ=[ク]/[ケ]

であるから、BQ=[コ]であり、△ABCの中心をI
とすると

  IQ=√[サ]/[シ]

である。また、直線CPと△ABCの内接円との交点でDとは異なる点をFと
すると

  cos∠DFE=√[スセ]/[ソ]

である。


※分数は(分子)/(分母)、xの2乗はx^2で、マーク部分の□は[ ]、マル1は{1}
で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 全部解いてから選択が理想だが・・・
 ◆2 普段の勉強では出てる値も出してみるのがオススメ!
 ◆3 三角形の辺は内接円の接線

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説

◆1は省略します。


 ◆2 普段の勉強では出てる値も出してみるのがオススメ!

では今回の問題です。

「AB=4,BC=7,CA=5」の△ABCについて考えます。

「このとき、cos∠BAC=−1/5,sin∠BAC=2√6/5である」

とあります。
三角比の問題なら普通はこういった値を出すところから始めますが、5番は
平面図形の性質の問題ということで、三角比の値は与えられています。
実際のセンターでは、「じゃ、そのまま使おう!」で構いませんが、普段の勉強
では、本当にこれらの値になるのか求めるところからやることをお勧めします。

三角形の3辺がわかっているとき、コサインの値は、余弦定理で出すことが
できますね。

★a^2=b^2+c^2−2bc・cosA

a=BC=7,b=CA=5,c=AB=4,∠A=∠BACですね。
これらの値を代入してみると、

       7^2=5^2+4^2−2×5×4×cos∠BAC
       49=25+16−40cos∠BAC
40cos∠BAC=41−49
40cos∠BAC=−8
  cos∠BAC=−1/5

ということで、cos∠BAC=−1/5がわかりました。

コサインがわかれば、サインは三角比の相互関係で求める事ができますね。

★(sinθ)^2+(cosθ)^2=1

θ=∠BACとして、cos∠BAC=−1/5を代入すると、

(sinθ)^2+(−1/5)^2=1
  (sinθ)^2+1/25=1
       (sinθ)^2=1−1/25
       (sinθ)^2=24/25
         sinθ=2√6/5

ということで、sinθ=2√6/5も確認できました。

このようにちゃんと出してみると、より良い理解につながります。
ぜひ皆さんも日頃から取り組んでみてください!


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆3 三角形の辺は内接円の接線

では、今回の問題の最初の設問「△ABCの内接円の半径」を求めていきましょう!

内接円とは三角形の内側に描いた円で、円周と三角形の3辺が接する円です。
円周と辺が接するので、当然、三角形の3辺は内接円の接線です。
そして接線ならば当然「接線の性質」が成り立つ。ということができます。

★円の中心から接点に引いた半径は、接線と垂直に交わる

という性質があるので、△ABCの頂点と内接円の中心Oを結んで、OA,OB,
OCによって△ABCを3つの三角形に分けると、3つとも半径が「高さ」になり
ます。つまり・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 14:54| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

書き換え英作文解答「不定詞」「動名詞」「助動詞」「接続詞」

書き換え英作文解答「不定詞」「動名詞」「助動詞」「接続詞」


ここは「To use a computer is not difficult.」の書き換え英作文の解答ページです。


直接このページに来た人はまずは問題ページへgo!





To use a computer is not difficult.(コンピューターを使うことは難しくありません)


@主語をitにして同じ内容に→It is 〜 to doの構文にする
It is not difficult to use a computer.(コンピューターを使うことは難しくありません)


A動名詞を使って同じ内容に→不定詞の名詞的用法と動名詞はだいたい同じ内容
Using a computer is not difficult.(コンピューターを使うことは難しくありません)


B「コンピューターを使うことは簡単です」という意味に→もとの分のnot difficultをeasyにする
To use a computer is easy.
またはIt is easy to use a computer.
など


C「あなたは簡単にコンピューターを使うことができます」という意味に→「あなた」が主語で、「使うことができます」が述語。「簡単に」は副詞なので「easily」
You can use a computer easily.
など

D「コンピューターを使えば、あなたは情報を簡単に手に入れることができます」という意味に→「もしあなたがコンピューターを使ったなら」から始める。「情報を手に入れる」は「get information」など
If you use a computer, you can get information easily.
など


直接指導の授業、英語の通信添削利用者には、さらに詳しい解説や、他の解答例も示しています。
皆様もぜひ、えまじゅくのメール添削をご利用ください。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


ラベル:英語
posted by えま at 14:47| Comment(0) | 書き換え英作文 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN