2019年09月20日

本日配信のメルマガ。2018年センター数学2B第1問[2]

本日配信のメルマガでは、2018年大学入試センター試験数学2B第1問[2]を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2018年センター試験数2Bより

第1問

[2] cを正の定数として、不等式

  x^(log[3]x)≧(x/c)^3  ……{2}

を考える。

 3を底とする{2}の両辺の対数をとり、t=log[3]xとおくと

  t^[ソ]−[タ]t+[タ]log[3]c≧0  ……{3}

となる。ただし、対数log[a]bに対し、aを底といい、bを真数という。

 c=(9の3乗根)のとき、{2}を満たすxの値の範囲を求めよう。{3}により

  t≦[チ],t≧[ツ]

である。さらに、真数の条件を考えて

  [テ]<x≦[ト],x≧[ナ]

となる。

 次に、{2}がx>[テ]の範囲でつねに成り立つようなcの値の範囲を求めよう。

 xがx>[テ]の範囲を動くとき、tのとり得る値の範囲は[ニ]である。
[ニ]に当てはまるものを、次の{0}〜{3}のうちから一つ選べ。

{0} 正の実数全体  {1} 負の実数全体
{2} 実数全体  {3} 1以外の実数全体

この範囲のtに対して、{3}がつねに成り立つための必要十分条件は、

log[3]c≧[ヌ]/[ネ]である。すなわち、c≧([ハヒ]の[ノ]乗根)である。


※分数は(分子)/(分母)、xの2乗はx^2、対数の底やマーク部分の□は[ ]で
表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 分数の指数の計算
 ◆2 指数・対数の関係
 ◆3 対数の計算法則
 ◆4 「対数をとり」とあるので「対数をとる」
 ◆5 真数の指数は対数の係数

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1〜3は省略します。


 ◆4 「対数をとり」とあるので「対数をとる」

では今回の問題です。

cを正の定数として、不等式「x^(log[3]x)≧(x/c)^3」を考えます。

この式の次に、やるべきことの指示があります。

「3を底とする{2}の両辺の対数をとり」とありますね。

慣れていない人には「それって美味しいの?」レベルの意味不明さかも知れません
が、センター試験では「とにかく誘導の通りにやる」ことが大切です。

log[3]{x^(log[3]x)}≧log[3]{(x/c)^3}

「3を底とする{2}の両辺の対数」をとっただけです。
そのように指示があるので、そうやればOKです(笑)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆5 真数の指数は対数の係数

そう言われても「んで?どうすれば良いの?」と思う人も多いと思います。
すぐには気付かない人も多いですが、実は簡単です(笑)

できた式は対数の式なので、対数の計算法則を使えば良いのです。

log[3]{x^(log[3]x)}は、真数がx^(log[3]x)です。
「真数の指数は対数の係数」なので、log[3]xがもとの対数の係数になります。
つまり・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 10:38| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

大学入試英語民間試験は必要ないかも?

来年度以降の大学入試への英語の民間試験導入が迷走していますね。

例えばこんな記事が出ています。

英語民間試験、戸惑いの船出 大学入試、英検予約始まる

「試験によって目的も会場も料金も違う」
「回数も種類も多い都市部が有利になってしまう」
「異なる試験を入試の判定に利用すると公平性が担保できない」

などなど、最初から言われていることを今頃になって気づいたかのように議論しています。なんという先見の明でしょうか(笑)

そして、民間試験を利用しないと決定した大学も、まだ態度未定の大学もたくさんあります。

このためにヤキモキするくらいなら、いっそのこと全て白紙に戻したらどうでしょうか?

生徒側も、「英検2級取れれば有利な場合がある。準1級以上取れれば加点や英語試験免除など明確なメリットがある。取らなくてもセンター試験(大学入試共通テスト)でちゃんとできれば全く問題ない」という従来通りのスタンスで良いような気がします。
posted by えま at 10:29| Comment(0) | 日記 | このブログの読者になる | 更新情報をチェックする

高校生物「バイオーム」「日本」

高校生物「バイオーム」「日本」

次の文章の空欄に適語を入れよ。

日本は全国的に比較的降水量が多いため、植物の分布は主に(@)によって決まる。基本的に緯度が高いほど、高度が高いほど(@)は低いため、緯度や高度によってバイオームが決まる。
寒冷な北海道東部には(A)などの針葉樹林が、北海道南部や東北地方にはミズナラ・ブナなどの(B)が、関東・北陸から九州にかけての低地にはシイ・カシなどの(C)が、九州南端から南西諸島にはビロウ、ヘゴなどの(D)が成育している。



解答はこのページ下に掲載します。


センター過去問生物+生物基礎


生物の書籍


@気温,Aエゾマツ・トドマツ,B夏緑樹林,C照葉樹林,D亜熱帯多雨林


日本は全国的に比較的降水量が多いため、植物の分布は主に気温によって決まる。基本的に緯度が高いほど、高度が高いほど気温は低いため、緯度や高度によってバイオームが決まる。
寒冷な北海道東部にはエゾマツ・トドマツなどの針葉樹林が、北海道南部や東北地方にはミズナラ・ブナなどの夏緑樹林が、関東・北陸から九州にかけての低地にはシイ・カシなどの照葉樹林が、九州南端から南西諸島にはビロウ、ヘゴなどの亜熱帯多雨林が成育している。


ちなみに、ここでは代表例を2つずつ挙げましたが、各バイオームの植物例はそれぞれ他にもありますし、複数のバイオームにまたがって成育する植物もあるなど、各植物の境界は明確に線引きできるものではないことを頭に入れておく必要があります。


関連項目
森林の階層構造


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 08:46| Comment(0) | 高校生物 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN