2019年09月27日

書き換え英作文問題「be動詞」「疑問文」「否定文」「現在完了形」

書き換え英作文問題「be動詞」「疑問文」「否定文」「現在完了形」


指示に従って書き換えよ。
This is the first time for me to see a doctor.

1. 疑問文に

─────────────────────────────────────── 
2. 否定文に

─────────────────────────────────────── 
3. 「私が医者に会うのは、これが2回目です」となるように

─────────────────────────────────────── 
4. 「私がここに来るのは、これが3回目でした」となるように

─────────────────────────────────────── 
5. 「私はそこに行ったことがありません」となるように

─────────────────────────────────────── 


解答解説はこちら


今回の問題は、次の書籍のP.17にも掲載されています。
詳しい解答解説をご覧になりたい方は、電子書籍をご利用ください。



−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


ラベル:英語
posted by えま at 14:58| Comment(0) | 書き換え英作文 | このブログの読者になる | 更新情報をチェックする

高校化学「電気分解」「硫酸銅」

高校化学「電気分解」「硫酸銅」

白金電極を用いて、硫酸銅(U)水溶液を1.0Aの電流で40分13秒間電気分解を行った。次の問いに答えよ。

(1) それぞれの電極で起こる変化をイオン反応式で表せ。

(2) この電気分解で流れた電気量は、電子何molに相当するか求めよ。

(3) 陽極に発生する気体は標準状態で何Lか求めよ。



解答解説はそれぞれの問題文をクリックしてください。


センター過去問





関連項目
電気分解


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 08:27| Comment(0) | 高校化学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2018年センター数学2B第2問[1]

本日配信のメルマガでは、2018年大学入試センター試験数学2B第2問[1]を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

第2問

[ 1 ] p>0とする。座標平面上の放物線y=px^2+qx+rをCとし、
直線y=2x−1をlとする。Cは点A(1,1)においてlと接しているとする。

(1) qとrを、pを用いて表そう。放物線C上の点Aにおける接線lの傾きは
[ア]であることから、q=[イウ]p+[エ]がわかる。さらに、Cは点Aを通る
ことから、r=p−[オ]となる。

(2) v>1とする。放物線Cと直線lおよび直線x=vで囲まれた図形の面積Sは
S=(p/[カ])(v^3−[キ]v^2+[ク]v−[ケ])である。

また、x軸とlおよび2直線x=1,x=vで囲まれた図形の面積Tは、
T=v^[コ]−vである。

 U=S−Tはv=2で極値をとるとする。このとき、p=[サ]であり、v>1の
範囲でU=0となるvの値をv0とすると、v0=([シ]+√[ス])/[セ]である。
1<v<v0の範囲でUは[ソ]。

[ソ]に当てはまるものを、次の{0}〜{4}のうちから一つ選べ。

{0} つねに増加する  {1} つねに減少する  {2} 正の値のみをとる
{3} 負の値のみをとる  {4} 正と負のどちらの値もとる

p=[サ]のとき、v>1におけるUの最小値は[タチ]である。


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記して
います。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 導関数は傾きを表す
 ◆2 極値では導関数の値(=微分係数)が0
 ◆3 積分は微分の逆
 ◆4 数学でも文章の言い換えをしてみる
 ◆5 y=ax+bのaが傾き

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1〜3は省略します。


 ◆4 数学でも文章の言い換えをしてみる

前置きはこの辺にして、今回の問題です。

[1] p>0とする。座標平面上の放物線y=px^2+qx+rをCとし、
直線y=2x−1をlとする。Cは点A(1,1)においてlと接しているとする。

このようにあります。

p>0の放物線y=px^2+qx+rがあり、これをCとしているようです。

そして直線y=2x−1があり、これをlとしています。

lはA(1,1)におけるCの接線らしいです。

まずは問題文に書いてあることを確認してみました。
ただ単に書いてあることをなぞるだけでなく、今ここでやってみたように、
自分なりに言い換えたりすると、内容がよくわかると思います。

皆さんもぜひ試してみてくださいね!


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆5 y=ax+bのaが傾き

内容がよくわかったところで、(1)にいってみましょう!

(1) qとrを、pを用いて表そう。放物線C上の点Aにおける接線lの傾きは
[ア]であることから、q=[イウ]p+[エ]がわかる。さらに、Cは点Aを通る
ことから、r=p−[オ]となる。

このように書いてあります。

「放物線C上の点Aにおける接線lの傾き」と言っています。

接線lはy=2x−1です。

中学の数学でやったように、直線はy=ax+bの形で表すことができて・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 08:12| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN