本日配信のメルマガでは、2019年大学入試センター試験数学2B第2問を解説します。
【高校数学】読むだけでわかる!センター数学の考え方
http://www.mag2.com/m/0001641004.htmlリクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
第2問
p,qを実数とし、関数f(x)=x^3+px^2+qxはx=−1で極値2を
とるとする。また、座標平面上の曲線y=f(x)をC,放物線y=−kx^2をD,
放物線D上の点(a,−ka^2)をAとする。ただし、k>0,a>0である。
(1) 関数f(x)がx=−1で極値をとるので、f'(−1)=[ア]である。これと
f(−1)=2より、p=[イ],q=[ウエ]である。よって、f(x)はx=[オ]で
極小値[カキ]をとる。
(2) 点Aにおける放物線Dの接線をlとする。Dとlおよびx軸で囲まれた図形の
面積Sをaとkを用いて表そう。
lの方程式は
y=[クケ]kax+ka^[コ] ……{1}
と表せる。lとx軸の交点のx座標は[サ]/[シ]であり、Dとx軸および直線
x=aで囲まれた図形の面積は(k/[ス])a^[セ]である。よって、
S=(k/[ソタ])a^[セ]である。
(3) さらに、点Aが曲線C上にあり、かつ(2)の接線lがCにも接するとする。
このときの(2)のSの値を求めよう。
AがC上にあるので、k=[チ]/[ツ]−[テ]である。
lとCの接点のx座標をbとすると、lの方程式はbを用いて
y=[ト](b^2−[ナ])x−[ニ]b^3 ……{2}
と表される。{2}の右辺をg(x)とおくと
f(x)−g(x)=(x−[ヌ])^2・(x+[ネ]b)
と因数分解されるので、a=−[ネ]bとなる。{1}と{2}の表す直線の傾きを比較
することにより、a^2=[ノハ]/[ヒ]である。
したがって、求めるSの値は[フ]/[ヘホ]である。
※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記して
います。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================
茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。
1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。
東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ →
http://www.a-ema.com/━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 分数の指数の計算
◆2 指数・対数の関係
◆3 対数の計算法則
◆4 「対数をとり」とあるので「対数をとる」
◆5 真数の指数は対数の係数
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/■ センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 →
http://amzn.to/2lnKZdS------------------------------------------------------------------------
■ 解説
◆1〜3は省略します。
◆4 極値なのでf'(x)=0
前置きはこの辺にして、今回の問題です。
2019年は、3次関数f(x)=x^3+px^2+qxについての問題でした。
この関数は、「x=−1で極値2をとる」と言っています。
ここからいくつか式ができますね?
まずは、◆2でも触れたように「極値は接線の傾きがゼロになるところ」なので、
f(x)を微分し、x=−1を代入した式の値はゼロになります。
つまり、f'(−1)=0です。
よって、[ア]=0
少し計算しておきましょう!
f'(x)=3x^2+2px+q
f'(−1)=3(−1)^2+2p×(−1)+q
=3−2p+q=0
このような式が得られます。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
◆5 極値はy座標
さらに、「x=−1で極値2をとる」ので、f(−1)=2です。
極値は式の値なので、つまりはxy平面にグラフを描いた場合のy座標ですね。
これもその通りの式を作ってみましょう!
f(x)=x^3+px^2+qx
f(−1)=(−1)^3+p(−1)^2+q(−1)
=−1+p−q=2
文字が2つあるので、◆4の式と連立すれば・・・
(以下略)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!センター数学の考え方
http://www.mag2.com/m/0001641004.html数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。
電子書籍版はこちら →→
http://amzn.to/2oZjEzX━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com
http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html