2020年04月14日

高校数学「三角関数」「tan22.5°」

高校数学「三角関数」「tan22.5°」

■ 問題

tan22.5°の値を求めよ。


タンジェントの場合も、サインやコサインの場合ど同様に、もちろん半角の公式を使います。


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!


■ 解答解説

サインの半角の公式は

{sin(θ/2)}^2=(1−cosθ)/2

コサインの半角の公式は

{cos(θ/2)}^2=(1+cosθ)/2

でしたね。

これらと相互関係tanθ=sinθ/cosθを組み合わせると、簡単にタンジェントの半角の公式を導く事ができます。

tanθ=sinθ/cosθの両辺を2乗すると、

(tanθ)^2=(sinθ)^2/(cosθ)^2

ここでθにθ/2を代入すると、

{tan(θ/2)}^2={sin(θ/2)}^2/{cos(θ/2)}^2

右辺の分子と分母それぞれに半角の公式を代入すれば、

{tan(θ/2)}^2={(1−cosθ)/2}/{(1+cosθ)/2}

右辺の分子と分母それぞれに2を掛けると、

{tan(θ/2)}^2=(1−cosθ)/(1+cosθ)

このように、タンジェントの半角の公式を導くことができました。

θ/2=22.5°とするとθ=45°なので、

(tan22.5°)^2=(1−cos45°)/(1+cos45°)
         =(1−√2/2)/(1+√2/2)
         =(2−√2)/(2+√2)
         =(2−√2)^2/(4−2)  ←有理化した
         =(4−4√2+2)/2
         =(6−4√2)/2
         =3−2√2

よって、tan22.5°=√(3−2√2)


関連問題
sin22.5°の場合
cos22.5°の場合


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 14:00| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2020年センター数学2B第2問 [ソ]まで

本日配信のメルマガでは、2020年大学入試センター試験数学2B第2問の[ソ]までを解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2020年センター試験数2Bより

第2問

 a>0とし、f(x)=x^2−(4a−2)x+4a^2+1とおく。座標平面上で、
放物線y=x^2+2x+1をC,放物線y=f(x)をDとする。また、lをCとD
の両方に接する直線とする。

(1) lの方程式を求めよう。
 lとCは点(t,t^2+2t+1)において接するとすると、lの方程式は

 y=([ア]t+[イ])x−t^2+[ウ] ……{1}

である。また、lとDは点(s,f(s))において接するとすると、lの方程式は

 y=([エ]s−[オ]a+[カ])x−s^2+[キ]a^2+[ク] ……{2}

である。ここで、{1}と{2}は同じ直線を表しているので、t=[ケ],s=[コ]aが
成り立つ。
 したがって、lの方程式はy=[サ]x+[シ]である。

(2) 2つの放物線C,Dの交点のx座標は[ス]である。
 Cと直線l,および直線x=[ス]で囲まれた図形の面積をSとすると、
S=(a^[セ])/[ソ]である。

(3) a≧1/2とする。二つの放物線C,Dと直線lで囲まれた図形の中で
0≦x≦1を満たす部分の面積Tは,a>[タ]のとき、aの値によらず

 T=[チ]/[ツ]

であり、1/2≦a≦[タ]のとき

 T=−[テ]a^3+[ト]a^2−[ナ]a+[ニ]/[ヌ]

である。

(4) 次に、(2), (3)で定めたS,Tに対して、U=2T−3Sとおく。aが
1/2≦a≦[タ]の範囲を動くとき、Uはa=[ネ]/[ノ]で最大値[ハ]/[ヒフ]を
とる。


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記して
います。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 導関数は傾きを表す
 ◆2 極値では導関数の値(=微分係数)が0
 ◆3 積分は微分の逆
 ◆4 接線なら微分

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1〜3は省略します。


それでは今回の問題を確認してみましょう!

 「a>0」という条件で、「f(x)=x^2−(4a−2)x+4a^2+1」が
与えられています。さらに、

「放物線y=x^2+2x+1をC,放物線y=f(x)をD」としています。
そして、「CとDの両方に接する直線をl」としているようです。

最初の設問では、lとCの接点を(t,t^2+2t+1)として、このtを使って
接線lの方程式を求めます。

◆1でも触れたように、導関数は接線の傾きを表す関数です。
だから「接線の方程式を求めたければ、まずは微分」と考えます。

C:y=x^2+2x+1を微分してみると・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 11:23| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

高校数学「三角関数」「cos22.5°」

高校数学「三角関数」「cos22.5°」

■ 問題

cos22.5°の値を求めよ。


半角の公式を使う最も基本的な問題ですね。


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!


■ 解答解説

sin22.5°の場合と同じく、cos22.5°でも半角の公式を使うのがよいです。

まずはコサインの2倍角より、cos2θ=(cosθ)^2−(sinθ)^2

相互関係より(sinθ)^2=1−(cosθ)^2を代入すると、

cos2θ=(cosθ)^2−{1−(cosθ)^2}
    =(cosθ)^2−1+(cosθ)^2
    =2(cosθ)^2−1

2(cosθ)^2=1+cos2θ
(cosθ)^2=(1+cos2θ)/2

ここで、θにθ/2を代入すれば、

{cos(θ/2)}^2=(1+cosθ)/2

これでコサインの半角の公式完成です。
このように、サインでもコサインでも半角の公式はコサインの2倍角から求めることができます。

θ/2=22.5°とするとθ=45°なので、

(cos22.5°)^2=(1+cos45°)/2
         =(1+√2/2)/2
         =(2+√2)/4
cos22.5°=√{(2+√2)/4}   ←cos22.5°>0
       =√(2+√2)/2    ←分子は二重根号


関連問題
sin22.5°の場合
tan22.5°の場合


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 10:21| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN