2020年08月11日

中学数学(用語)「資料の整理」「中央値」

中学数学(用語)「資料の整理」「中央値」

中学数学の「資料の整理」は、用語さえわかれば誰でも常識な判断で簡単にわかる単元です。
しっかり用語を覚えていきましょう!


★中央値(ちゅうおうち, median)

中央値とは、データを値の順に並べたとき、順位が真ん中の値です。

データの個数(人数)が奇数のときは、ちょうど真ん中の順位の人がいるので、そのまま真ん中の順位の値でOKですが、
データの個数(人数)が偶数のときは、ちょうど真ん中の順位の人はいないので、真ん中に近い2つの値の平均が中央値になります。

例えば、

全体が5人なら中央値は3位の人の値で、
全体が6人なら中央値は3位と4位の値の平均

となります。


◆関連項目
階級値最頻値、平均値


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:15| Comment(0) | 中学数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2020年センター数学1A第2問[1]

本日配信のメルマガでは、2020年大学入試センター試験数学1A第2問[1]を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

第2問

[1] △ABCにおいて、BC=2√2とする。∠ACBの二等分線と辺ABの
交点をDとし、CD=√2,cos∠BCD=3/4とする。このとき、
BD=[ア]であり

 sin∠ADC=√[イウ]/[エ]

である。AC/AD=√[オ]であるから

 AD=[カ]

である。また、△ABCの外接円の半径は[キ]√[ク]/[ケ]である。


※分数は(分子)/(分母)、マル1は{1}、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 三角比は直角三角形の辺の比
 ◆2 相互関係は三平方の定理や三角比の定義からわかる
 ◆3 正弦定理は角と対辺、余弦定理と面積は2辺とその挟む角
 ◆4 2辺と挟む角だから余弦定理

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説

◆1〜3は省略します。


 ◆4 2辺と挟む角だから余弦定理

前置きはこのくらいにして、今回の問題です。

「△ABCにおいて、BC=2√2とする。∠ACBの二等分線と辺ABの
交点をDとし、CD=√2,cos∠BCD=3/4とする」

という条件で、BDを求めます。

△BCDに注目すると、BC=2√2,CD=√2,cos∠BCD=3/4が
わかっているから、今◆3で解説した「2辺とその挟む角」がわかっているときに
当てはまることがわかると思います。

つまり、余弦定理を・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 18:07| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

中学数学(用語)「資料の整理」「階級値」

中学数学(用語)「資料の整理」「階級値」

中学数学の「資料の整理」は、用語さえわかれば誰でも常識な判断で簡単にわかる単元です。
しっかり用語を覚えていきましょう!


★階級値(class value)

度数分布表やヒストグラムの階級の中央の値で、その階級を代表する値です。
例えば「4〜6」という階級があれば、階級値は7です。

度数分布表やヒストグラムで最頻値や中央値を求めるときは、該当する階級の階級値を答えます。


◆関連項目
最頻値、中央値、平均値


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 12:00| Comment(0) | 中学数学 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN