2020年12月11日

本日配信のメルマガ。2018年センター数学2B第1問[2]

本日配信のメルマガでは、2018年大学入試センター試験数学2B第1問[2]を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
      『とにかく早い者勝ちっ!』  
      ドメイン取るならお名前.com  
  https://px.a8.net/svt/ejp?a8mat=35Q4JW+76ZKXE+50+2HEVMR   
 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□


■ 問題

2018年センター試験数2Bより

第1問

[2] cを正の定数として、不等式

  x^(log[3]x)≧(x/c)^3  ……{2}

を考える。

 3を底とする{2}の両辺の対数をとり、t=log[3]xとおくと

  t^[ソ]−[タ]t+[タ]log[3]c≧0  ……{3}

となる。ただし、対数log[a]bに対し、aを底といい、bを真数という。

 c=(9の3乗根)のとき、{2}を満たすxの値の範囲を求めよう。{3}により

  t≦[チ],t≧[ツ]

である。さらに、真数の条件を考えて

  [テ]<x≦[ト],x≧[ナ]

となる。

 次に、{2}がx>[テ]の範囲でつねに成り立つようなcの値の範囲を求めよう。

 xがx>[テ]の範囲を動くとき、tのとり得る値の範囲は[ニ]である。
[ニ]に当てはまるものを、次の{0}〜{3}のうちから一つ選べ。

{0} 正の実数全体  {1} 負の実数全体
{2} 実数全体  {3} 1以外の実数全体

この範囲のtに対して、{3}がつねに成り立つための必要十分条件は、

log[3]c≧[ヌ]/[ネ]である。すなわち、c≧([ハヒ]の[ノ]乗根)である。


※分数は(分子)/(分母)、xの2乗はx^2、対数の底やマーク部分の□は[ ]で
表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 分数の指数の計算
 ◆2 指数・対数の関係
 ◆3 対数の計算法則
 ◆4 「対数をとり」とあるので「対数をとる」
 ◆5 真数の指数は対数の係数

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1〜3は省略します。


 ◆4 「対数をとり」とあるので「対数をとる」

では今回の問題です。

cを正の定数として、不等式「x^(log[3]x)≧(x/c)^3」を考えます。

この式の次に、やるべきことの指示があります。

「3を底とする{2}の両辺の対数をとり」とありますね。

慣れていない人には「それって美味しいの?」レベルの意味不明さかも知れません
が、センター試験では「とにかく誘導の通りにやる」ことが大切です。

log[3]{x^(log[3]x)}≧log[3]{(x/c)^3}

「3を底とする{2}の両辺の対数」をとっただけです。
そのように指示があるので、そうやればOKです(笑)


■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■
スマホで簿記資格が取れる?!
■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■


●「簿記資格」に興味があるけど、時間もお金もない。。

という方におすすめの情報です。

現在、「スタディング 簿記講座」というオンライン講座の受講生が急増しています。

スタディング 簿記講座は、スマートフォンやPC、タブレットを使って、いつでも勉強ができるオンライン講座です。

テレビ番組のようなビデオ講座を見て、問題を解いていくだけで実力がつくという、とても便利な講座です。

スマートフォンがあれば、いつでも勉強できるので、通勤時間や休み時間など、スキマ時間を使って、資格が取れるのです。

価格も、従来の資格講座に比べて格段に安いですのでおすすめです。

簡単に無料でお試しできますので、興味のある方はどうぞ。

=> スタディング 簿記講座のキャンペーン情報や無料お試しはコチラ!
https://px.a8.net/svt/ejp?a8mat=35QFIF+21TRSI+1TDM+6P4K3


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆5 真数の指数は対数の係数

そう言われても「んで?どうすれば良いの?」と思う人も多いと思います。
すぐには気付かない人も多いですが、実は簡単です(笑)

できた式は対数の式なので、対数の計算法則を使えば良いのです。

log[3]{x^(log[3]x)}は、真数がx^(log[3]x)です。
「真数の指数は対数の係数」なので、log[3]xがもとの対数の係数になります。
つまり・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 08:04| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

高校物理(用語)「静電気力」

高校物理(用語)「静電気力」

★静電気力(electrostatic force)

荷電粒子の間にはたらく力を静電気力という。
同じ電荷同士には斥力、異なる電荷同士には引力がはたらく。
静電気力の大きさは、クーロンの法則F=k0・q1q2/r^2で求めることができる。


静電気力も力なので、ベクトルであり単位はN(ニュートン)です。
力だから、静電気力を受ける荷電粒子の加速や力のつり合いを考える場合もあります。

静電気力の意味を理解すると共に、電場電位との関係も理解しておくようにしましょう!


◆関連項目
クーロンの法則電場電位、磁気力に関するクーロンの法則、万有引力


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 07:00| Comment(0) | 高校物理 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN