2021年03月09日

「10秒でわかる!高校数学2B数列の考え方」発売しました!

久しぶりに新刊出しました。2年ぶりくらいでしょうか?

今日発売の書籍はコレです!

「10秒でわかる!高校数学2B数列の考え方」


選択肢を選びながら読んでもらうことで、解き方・考え方のポイントがわかることを目指して執筆しました。

大学入試レベルの全ての論点を余すところなく網羅したわけではありませんが、数列の主なポイントは一通りマスターできるはずです。

解き方の単なる暗記ではなく、「どうしてそうするのか」「それはどんな意味なのか」を理解して習得できると思います。

今年度の受験シーズンはもう終わりですが、素早く要点を掴みたい人に最適です。

もちろん、来年度以降の受験生もまずは読んでみてください。


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | 参考書・問題集紹介 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2021年共通テスト数学1A第3問(2)まで

本日配信のメルマガでは、2021年大学入試共通テスト第1日程数学1A第3問の(2)までを解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


  ●━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━●
     世界にたった1つ、あなただけのドメインを登録しよう!   
     https://px.a8.net/svt/ejp?a8mat=35Q4JW+76ZLP6+50+2HF3CJ
  ●━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━●


■ 問題

2021年第1回共通テスト数1Aより

第3問

 中にくじが入っている箱が複数あり、各箱の外見は同じであるが、当たりくじを
引く確率は異なっている。くじ引きの結果から、どの箱からくじを引いた可能性が
高いかを、条件付き確率を用いて考えよう。

(1) 当たりくじを引く確率が1/2である箱Aと、当たりくじを引く確率が1/3
である箱Bの二つの箱の場合を考える。

(i) 各箱で、くじを1本引いてはもとに戻す試行を3回繰り返したとき

  箱Aにおいて、3回中ちょうど1回当たる確率は[ア]/[イ] …{1}
  箱Bにおいて、3回中ちょうど1回当たる確率は[ウ]/[エ] …{2}

である。

(ii) まず、AとBのどちらか一方の箱をでたらめに選ぶ。次にその選んだ箱に
おいて、くじを1本引いてはもとに戻す試行を3回繰り返したところ、3回中
ちょうど1回当たった。このとき、箱Aが選ばれる事象をA、箱Bが選ばれる事象
をB、3回中ちょうど1回当たる事象をWとすると

  P(A∩W)=(1/2)×([ア]/[イ]),P(B∩W)=(1/2)×([ウ]/[エ])

である。P(W)=P(A∩W)+P(B∩W)であるから、3回中ちょうど1回
当たったとき、選んだ箱がAである条件付き確率PW(A)は[オカ]/[キク]となる。
また、条件付き確率PW(B)は[ケコ]/[サシ]となる。


(2) (1)のPW(A)とPW(B)について、次の[事実](*)が成り立つ。

―事実(*)―――――――――――――――――――――――――――
|Pw(A)とPw(B)の[ス]は、{1}の確率と{2}の確率の[ス]に等しい。|
――――――――――――――――――――――――――――――――

[ス]の解答群
―――――――――――――――――――――――――――――――
|{0} 和  {2} 2乗の和  {2} 3乗の和  {3} 比  {4} 積 |
―――――――――――――――――――――――――――――――


(3) 花子さんと太郎さんは[事実](*)について話している。
―――――――――――――――――――――――――――――――――――
|花子:[事実](*)はなぜ成り立つのかな?               |
|太郎:PW(A)とPW(B)を求めるのに必要なP(A∩W)とP(B∩W)の計算|
|   で、{1],{2}の確率に同じ数1/2をかけているからだよ。    |
|花子:なるほどね。外見が同じ三つの箱の場合は、同じ数1/3をかける |
|   ことになるので、同様のことが成り立ちそうだね。        |
―――――――――――――――――――――――――――――――――――

 当たりくじを引く確率が、1/2である箱A,1/3である箱B,1/4である
箱Cの三つの箱の場合を考える。まず、A,B,Cのうちどれか一つの箱を
でたらめに選ぶ。次のその選んだ箱において、くじを1本引いてはもとに戻す
試行を3回繰り返したところ、3回中ちょうど1回当たった。このとき、選んだ
箱がAである条件付き確率は[セソタ]/[チツテ]となる。


(4)
―――――――――――――――――――――――――――――――――――
|花子:どうやら箱が三つの場合でも、条件付き確率の[ス]は各箱で3回中 |
|   ちょうど1回当たりくじを引く確率の[ス]になっているみたいだね。|
|太郎:そうだね。それを利用すると、条件付き確率の値は計算しなくても、|
|   その大きさを比較することができるね。             |
―――――――――――――――――――――――――――――――――――

 当たりくじを引く確率が、1/2である箱A,1/3である箱B,1/4である
箱C,1/5である箱Dの四つの箱の場合を考える。まず、A,B,C,Dのうち
どれか一つの箱をでたらめに選ぶ。次にその選んだ箱において、くじを1本引いて
はもとに戻す試行を3回繰り返したところ、3回中ちょうど1回当たった。この
とき、条件付き確率を用いて、どの箱からくじを引いた可能性が高いかを考える。
可能性が高い方から順に並べると[ト]となる。

[ト]の解答群
―――――――――――――――――――――――――――――――――
|{0} A,B,C,D  {1} A,B,D,C  {2} A,C,B,D |
|{3} A,C,D,B  {4} A,D,B,C  {5} B,A,C,D |
|{6} B,A,D,C  {7} B,C,A,D  {8} B,C,D,A |
―――――――――――――――――――――――――――――――――


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 Pは順列、Cは組み合わせ
 ◆2 同時に起こるなら×、同時に起こらないなら+
 ◆3 同じ確率を繰り返すなら「反復試行」

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ 共通テスト・センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説

◆1,◆2は省略します。


 ◆3 同じ確率を繰り返すなら「反復試行」

では今回の問題です。

箱Aと箱Bがあり、それぞれの箱にはくじが入っているようです。

まずは「当たりくじを引く確率が1/2である箱A」から3回連続ひいて、
ちょうど1回当たる確率を考えます。

同じ確率の事象を繰り返すので、いわゆり「反復試行」の考え方を使うのが
ノーマルです。

あたりは3回中1回なので、あたりが何回目に出るか?のパターンは3C1=3通り
あります。
あたりは1/2,ハズレも1/2なので、あたり1回ハズレ2回の確率は、


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:08| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

高校数学(用語)「群数列」

高校数学(用語)「群数列」

★群数列(group sequence)

ある数列の一部を一定の法則に従って区切った数列を群数列という。


1,2,3,4,5,6,7,8,9,10,11,12,…

これを

1|2,3|4,5,6|7,8,9,10|11,12,…

このように区切ったものが代表例です。

n個目の区切った部分を「第n群」と呼び、「第n群の初項」や「第n群の数列の和」を求めるのがノーマルな問いとなっています。


もとの数列は等差数列の場合が多いですが、等比数列など、その他の数列の場合もあります。


◆関連項目
等差数列等比数列
数列まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 10:00| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN