2021年11月16日

高校物理(用語)「レンツの法則」

高校物理(用語)「レンツの法則」

★レンツの法則(Lenz's law)

「誘導起電力は、誘導電流のつくる磁場が、コイルを貫く磁束の変化を妨げる向きに生じる。」という法則のこと。

「誘導起電力の大きさは、コイルを貫く磁束の単位時間あたりの変化量に比例する。」こととあわせて、ファラデーの電磁誘導の法則という。


1巻のコイルに生じる誘導起電力Vは、磁束の変化量ΔΦ、時間の変化量Δtを用いて、以下の式で表されます。

V=−ΔΦ/Δt


◆ 関連項目
ファラデーの電磁誘導の法則
電気・磁気まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 21:00| Comment(0) | 高校物理 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2020年センター数学1A第3問[2]

本日配信のメルマガでは、2020年大学入試センター試験数学1A第3問[2]を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


  ●━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━●
     世界にたった1つ、あなただけのドメインを登録しよう!   
     https://px.a8.net/svt/ejp?a8mat=35Q4JW+76ZLP6+50+2HF3CJ
  ●━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━●


■ 問題

2020年大学入試センター試験数1Aより

第3問

[2] 1枚のコインを最大で5回投げるゲームを行う。このゲームでは、1回投げる
ごとに表が出たら持ち点に2点を加え、裏が出たら持ち点に−1点を加える。
はじめの持ち点は0点とし、ゲーム終了のルールを次のように定める。

・持ち点が再び0点になった場合は、その時点で終了する。
・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

(1) コインを2回投げ終わって持ち点が−2点である確率は[ウ]/[エ]である。
また、コインを2回投げ終わって持ち点が1点である確率は[オ]/[カ]である。

(2) 持ち点が再び0点になることが起こるのは、コインを[キ]回投げ終わったとき
である。コインを[キ]回投げ終わって持ち点が0点になる確率は[ク]/[ケ]である。

(3) ゲームが終了した時点で持ち点が4点である確率は[コ]/[サシ]である。

(4) ゲームが終了した時点で持ち点が4点であるとき、コインを2回投げ終わって
持ち点が1点である条件付き確率は[ス]/[セ]である。

※分数は(分子)/(分母)、マーク部分の□は[ ]、マル1は{1}で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 Pは順列、Cは組み合わせ
 ◆2 同時に起こるなら×、同時に起こらないなら+
 ◆3 −2点は2回連続裏

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ 共通テスト・センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説


◆1,2は省略します。


 ◆3 −2点は2回連続裏

それでは今回の問題です。

「1枚のコインを最大で5回投げるゲーム」について考えます。
「1回投げるごとに表が出たら持ち点に2点を加え」
「裏が出たら持ち点に−1点を加える」
「はじめの持ち点は0点」

さらに、

・持ち点が再び0点になった場合は、その時点で終了する。
・持ち点が再び0点にならない場合は、コインを5回投げ終わった時点で終了する。

という条件が定められています。

この条件で、まず最初は「コインを2回投げ終わって持ち点が−2点である確率」
を求めます。

「裏が出たら−1点」だから、2回投げ終わって−2点であるためには・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

高校数学「2次不等式」x^2−6x+k<0の整数解

高校数学「2次不等式」x2−6x+k<0の整数解

■ 問題

2−6x+k<0の整数解が3だけであるようなkの値の範囲を求めよ。


解答解説はこのページ下です。





■ 解答解説

この問題に限らず、2次不等式の問題は、グラフを使って考えます。

2−6x+k<0の解は、y=x2−6x+kのグラフがx軸より下を通る範囲を表します。

「整数解が3だけ」になるためには、この「x軸より下」の範囲に3だけが入ればOKというわけです。

そして、y=x2−6x+kのグラフは下に凸なので、「x軸より下」の範囲に3だけが入るためには、2と3の間と3と4の間でx軸と交わればいい。ということができます。


f(x)=x2−6x+kとすると、

2と3の間でx軸と交わるならば、f(2)>0,f(3)<0ですね。
さらに、3と4の間でx軸と交わるならば、f(3)<0,f(4)>0です。

これらを全て満たす範囲が求めるkの範囲です。
計算してみましょう!

f(2)=22−6×2+k
  =4−12+k
  =−8+K>0
      k>8

f(3)=32−6×3+k
  =9−18+k
  =−9+k<0
      k<9

f(4)=42−6×4+k
  =16−24+k
  =−8+k>0
      k>8

これらの共通範囲は、8<k<9


◆関連項目
2次不等式3x−2x^2<6
2次関数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 12:00| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN