2022年02月08日

本日配信のメルマガ。2022年共通テスト数学2B第1問[1]の(1)

本日配信のメルマガでは、2022年大学入試共通テスト数学2B第1問[1]の(1)を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2021年大学入試共通テスト第1日程数学2Bより

第1問

[1] 座標平面上に点A(−8,0)をとる。また、不等式

  x^2+y^2−4x−10y+4≦0

の表す領域をDとする。


(1) 領域Dは、中心が点([ア],[イ]),半径が[ウ]の円の[エ]である。

[エ]の解答群
┌――――――――――――――――――┐
|{0} 周  {1} 内部  {2} 外部   |
|{3} 周および内部  {4} 周および外部|
└――――――――――――――――――┘

 以下、点([ア],[イ])をQとし、方程式

  x^2+y^2−4x−10y+4=0

の表す図形をCとする。

(2) 点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。

(i) (1)により、直線y=[オ]は点Aを通るCの接線の一つとなることがわかる。

 太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
 点Aを通り、傾きがkの直線をlとする。

┌――――――――――――――――――――――――――――――┐
|太郎:直線lの方程式はy=k(x+8)と表すことができるから、|
|   これを                        |
|     x^2+y^2−4x−10y+4=0         |
|   に代入することで接線を求められそうだね。       |
|花子:x軸と直線AQのなす角のタンジェントに注目することでも|
|   求められそうだよ。                  |
└――――――――――――――――――――――――――――――┘

(ii) 太郎さんの求め方について考えてみよう。
 y=k(x+8)をx^2+y^2−4x−10y+4=0に代入すると、xについて
の2次方程式
 (k^2+1)x^2+(16k^2−10k−4)x+64k^2−80k+4=0
が得られる。この方程式が[カ]のときのkの値が接線の傾きとなる。

[カ]の解答群
┌――――――――――――――――――――――┐
|{0} 重解をもつ               |
|{1} 異なる二つの実数解をもち、一つは0である|
|{2} 異なる二つの正の実数解をもつ      |
|{3} 正の実数解と負の実数解をもつ      |
|{4} 異なる二つの負の実数解をもつ      |
|{5} 異なる二つの虚数解をもつ        |
└――――――――――――――――――――――┘

(iii) 花子さんの求め方について考えてみよう。
 x軸と直線AQのなす角θ(0<θ≦π/2)とすると

  tanθ=[キ]/[ク]

であり、直線y=[オ]と異なる接線の傾きはtan[ケ]と表すことができる。

[ケ]の解答群
┌――――――――――――――――――――――――┐
|{0} θ  {1} 2θ  {2} (θ+π/2)     |
|{3} (θ−π/2)  {4} (θ+π)  {5} (θ−π)|
|{6} (2θ−π/2)  {7} (2θ−π/2)    |
└――――――――――――――――――――――――┘

(iv) 点Aを通るCの接線のうち、直線y=[オ]と異なる接線の傾きをk0とする。
このとき、(ii)または(iii)の考え方を用いることにより

  k0=[コ]/[サ]

であることがわかる。
 直線lと領域Dが共有点を持つようなkの値の範囲は[シ]である。

[シ]の解答群
┌――――――――――――――――――┐
|{0} k>k0  {1} k≧k0     |
|{2} k<k0  {3} k≦k0     |
|{4} 0<k<k0  {5} 0≦k≦k0 |
└――――――――――――――――――┘


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 円の方程式と領域の基本
 ◆2 円の中心と半径なら平方完成

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説


◆1は省略します。


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆2 円の中心と半径なら平方完成

では今回の問題です。

x^2+y^2−4x−10y+4≦0

これを領域Dとして、まずは円の中心と半径を求めます。

◆1でも触れたように、円は(x−a)^2+(y−b)^2=r^2の形になります。
この形になるように、与式を変形していきましょう!
カッコの2乗だから平方完成ですね。

            x^2+y^2−4x−10y+4≦0
          (x^2−4x)+(y^2−10y)+4≦0
(x^2−4x+4−4)+(y^2−10y+25−25)+4≦0
        (x−2)^2−4+(y−5)^2−25+4≦0
               (x−2)^2+(y−5)^2≦25

これで中心と半径がわかる形になりました。


(以下略)


■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■
スマホで簿記資格が取れる?!
■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■


●「簿記資格」に興味があるけど、時間もお金もない。。

という方におすすめの情報です。

現在、「スタディング 簿記講座」というオンライン講座の受講生が急増しています。

スタディング 簿記講座は、スマートフォンやPC、タブレットを使って、いつでも勉強ができるオンライン講座です。

テレビ番組のようなビデオ講座を見て、問題を解いていくだけで実力がつくという、とても便利な講座です。

スマートフォンがあれば、いつでも勉強できるので、通勤時間や休み時間など、スキマ時間を使って、資格が取れるのです。

価格も、従来の資格講座に比べて格段に安いですのでおすすめです。

簡単に無料でお試しできますので、興味のある方はどうぞ。

=> スタディング 簿記講座のキャンペーン情報や無料お試しはコチラ!
https://px.a8.net/svt/ejp?a8mat=35QFIF+21TRSI+1TDM+6P4K3

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

高校物理「熱力学」「力学的エネルギー」粗い斜面上を滑る物体B

高校物理「熱力学」「力学的エネルギー」粗い斜面上を滑る物体B

◆問題

水平とのなす角が45°の粗い斜面上に、質量m[kg]の物体を静かに置くと、物体は斜面を滑り始めた。物体と斜面との動摩擦係数をμ',重力加速度の大きさをg[m/s2]として、次の問いに答えよ。

(1) 物体に働く重力、垂直抗力をそれぞれ求めよ。

(2) 物体が斜面上をs[m]滑る間に、重力、動摩擦力、垂直抗力がした仕事をそれぞれ求めよ。

(3) 物体が斜面上をs[m]滑る間に、この物体の温度は何[K]上昇するか求めよ。ただし、物体の比熱をc[J/(g・K)]とし、摩擦によって生じた熱量は全て物体の温度上昇に使われるものとする。


この記事では(3)を解説します。


★★ お知らせ ★★

AE個別学習室(えまじゅく)水戸教室では、学校の授業の補習、定期テスト対策だけでなく、「大学入試共通テスト」の対策授業を行っています。
従来のセンター試験や試行テストの内容を踏まえて、理系文系全科目の指導が可能です。
マンツーマンの授業なので「ゼロからのスタートの人は中学の復習から」「基本ができている人は応用問題の解き方中心に」など、ひとりひとりの状況に合わせて授業を行います。
適切な時期に適切な対策をすれば、どんな目標でも達成可能です。志望校を諦める前に、まずは一度ご相談ください。


◆解説

「摩擦によって発生した熱量=摩擦力がした仕事」と考えます。

(2)で求めたように、摩擦力がした仕事の大きさは(√2/2)μ'mgs[J]です。

これが全て物体の温度上昇に使われる。という設定です。

物体の比熱はc[J/(g・K)]なので、m[kg]の物体を1K上げるには、1000mc[J]の熱量(=仕事)が必要です。

というわけで、求める温度上昇をΔTとすると、

ΔT=(√2/2)μ'mgs/1000mc
 =√2・μ'gs/2000c[K]


この問題の最初に戻る→(1) 物体に働く重力、垂直抗力をそれぞれ求めよ。


◆関連項目
熱力学まとめ
力〜エネルギーまとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 07:00| Comment(0) | 高校物理 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN