高校物理「波動」「ドップラー効果」車の速さを求める問題@
◆問題
水平な平面上に設置された測定装置に向かって、車が接近してくるとする。測定装置から振動数f0の音波を出すと、その音波は車に当たって反射して、測定装置に戻ってくる。この戻ってきた音波を測定することにより、車の速さを求めることができる。音速をV,車の速さをv,V>vとして次の問いに答えよ。
(1) 測定装置に戻ってきた音波の振動数f'を求めよ。
参考図
装置 車
▼ ←
| □□
―――――――――
★★ お知らせ ★★
AE個別学習室(えまじゅく)水戸教室では、学校の授業の補習、定期テスト対策だけでなく、「大学入試共通テスト」の対策授業を行っています。
マンツーマンの授業なので「ゼロからのスタートの人は中学の復習から」「基本ができている人は応用問題の解き方中心に」など、ひとりひとりの状況に合わせて授業を行います。
適切な時期に適切な対策をすれば、どんな目標でも達成可能です。志望校を諦める前に、まずは一度ご相談ください。
◆解説
ドップラー効果の問題です。
観測者が聞く音の振動数をf',音源の振動数をf,音速をV,音源の速度をvs,観測者の速度をvoとすると、
f'={(V−vo)/(V−vs)}f
の式が成り立ちます。
まず、測定装置から音が出て、その音は車に反射して測定装置に戻ってきて、測定装置はその音の振動数を測定することができる。という設定ですね。
この場合、車は「動く反射板」のはたらきをします。反射板が動くときのドップラー効果の場合と同様です。
つまり、振動数f0の音波を受け取って、動きながら反射するので、ドップラー効果の影響を受けた振動数f'の音を出します。
車は音に向かって進んでいるので、vo=−vと考えます。車が受け取る音の振動数をf1とすると、
f1=[{(V−(−v)}/(V−0)]f0
={(V+v)/V}f0
ですね。
車はvの速さでこの振動数の音を出すと考えられるので、
f'={(V−0)/(V−v)}{(V+v)/V}f0
={V/(V−v)}{(V+v)/V}f0
={(V+v)/(V−v)}f0
これが車が反射する音、すなわち、測定装置が観測する音の振動数です。
次の問題→うなりを使って車の速さを求める
◆関連問題
反射板が動くときのドップラー効果
ドップラー効果
波動まとめ
江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2022年11月01日
本日配信のメルマガ。2019年センター数学2B第1問[2]
本日配信のメルマガでは、2019年大学入試センター試験数学2B第1問[2]を解説します。
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2019年センター試験数2Bより
第1問
[ 2 ] 連立方程式
{log[2](x+2)−2log[4](y+3)=−1 ……{2}
{(1/3)^y−11(1/3)^(x+1)+6=0 ……{3}
を満たすx,yを求めよう。
真数の条件により、x,yのとり得る値の範囲は[タ]である。[タ]に当てはまる
ものを、次の{0}〜{5}のうちから一つ選べ。ただし、対数log[a]bに対し、
aを底といい、bを真数という。
{0} x>0,y>0 {1} x>2,y>3 {2} x>−2,y>−3
{3} x<0,y<0 {4} x<2,y<3 {5} x<−2,y<−3
底の変換公式により
log[4](y+3)={log[2](y+3)}/[チ]
である。よって、{2}から
y=[ツ]x+[テ] ……{4}
が得られる。
次に、t=(1/3)^xとおき、{4}を用いて{3}をtの方程式に書き直すと
t^2−[トナ]t+[ニヌ]=0 ……{5}
が得られる。また、xが[タ]におけるxの範囲を動くとき、tのとり得る値の
範囲は
[ネ]<t<[ノ] ……{6}
である。
{6}の範囲で方程式{5}を解くと、t=[ハ]となる。したがって、連立方程式
{2},{3}を満たす実数x,yの値は
x=log[3]([ヒ]/[フ]),y=log[3]([ヘ]/[ホ])
であることがわかる。
※分数は(分子)/(分母)、xの2乗はx^2、対数の底やマーク部分の□は[ ]で
表記しています。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================
茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。
1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。
東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 分数の指数の計算
◆2 指数・対数の関係
◆3 対数の計算法則
◆4 底が正の数なら真数も正の数
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1〜3は省略します。
◆4 底が正の数なら真数も正の数
では今回の問題です。
{log[2](x+2)−2log[4](y+3)=−1 ……{2}
{(1/3)^y−11(1/3)^(x+1)+6=0 ……{3}
このような連立方程式のx,yを求める問題です。
指数・対数に慣れていない人にとっては、途方もなく難しく見えると思いますが、
大学入試レベルとしては、普通程度の難易度の式です。
落ち着いてひとつひとつわかることを確認して、式や値を求めていきましょう!
最初の設問では、真数条件より、x,yの値の範囲を表します。
指数対数の底が正の数ならば、その真数も正の数になる。というのが真数条件です。
つまり、もとの数が正の数ならば、それを何乗しても正の数にしかならない。
ということですね。
ということは、log[2](x+2)のx+2は正の数、つまり、x+2>0である
ことがわかります。これを解くと、
(以下略)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html
【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html
【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html
★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html
★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html
【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html
【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2019年センター試験数2Bより
第1問
[ 2 ] 連立方程式
{log[2](x+2)−2log[4](y+3)=−1 ……{2}
{(1/3)^y−11(1/3)^(x+1)+6=0 ……{3}
を満たすx,yを求めよう。
真数の条件により、x,yのとり得る値の範囲は[タ]である。[タ]に当てはまる
ものを、次の{0}〜{5}のうちから一つ選べ。ただし、対数log[a]bに対し、
aを底といい、bを真数という。
{0} x>0,y>0 {1} x>2,y>3 {2} x>−2,y>−3
{3} x<0,y<0 {4} x<2,y<3 {5} x<−2,y<−3
底の変換公式により
log[4](y+3)={log[2](y+3)}/[チ]
である。よって、{2}から
y=[ツ]x+[テ] ……{4}
が得られる。
次に、t=(1/3)^xとおき、{4}を用いて{3}をtの方程式に書き直すと
t^2−[トナ]t+[ニヌ]=0 ……{5}
が得られる。また、xが[タ]におけるxの範囲を動くとき、tのとり得る値の
範囲は
[ネ]<t<[ノ] ……{6}
である。
{6}の範囲で方程式{5}を解くと、t=[ハ]となる。したがって、連立方程式
{2},{3}を満たす実数x,yの値は
x=log[3]([ヒ]/[フ]),y=log[3]([ヘ]/[ホ])
であることがわかる。
※分数は(分子)/(分母)、xの2乗はx^2、対数の底やマーク部分の□は[ ]で
表記しています。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================
茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。
1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。
東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 分数の指数の計算
◆2 指数・対数の関係
◆3 対数の計算法則
◆4 底が正の数なら真数も正の数
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1〜3は省略します。
◆4 底が正の数なら真数も正の数
では今回の問題です。
{log[2](x+2)−2log[4](y+3)=−1 ……{2}
{(1/3)^y−11(1/3)^(x+1)+6=0 ……{3}
このような連立方程式のx,yを求める問題です。
指数・対数に慣れていない人にとっては、途方もなく難しく見えると思いますが、
大学入試レベルとしては、普通程度の難易度の式です。
落ち着いてひとつひとつわかることを確認して、式や値を求めていきましょう!
最初の設問では、真数条件より、x,yの値の範囲を表します。
指数対数の底が正の数ならば、その真数も正の数になる。というのが真数条件です。
つまり、もとの数が正の数ならば、それを何乗しても正の数にしかならない。
ということですね。
ということは、log[2](x+2)のx+2は正の数、つまり、x+2>0である
ことがわかります。これを解くと、
(以下略)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html
【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html
【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html
★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html
★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html
【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html
【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html
ラベル:数学
日本史「室町幕府の成立」南北朝の動乱@
日本史「室町幕府の成立」南北朝の動乱@
◆問題
空欄に適語を入れてください。
1336年、京都を制圧した足利尊氏は、持明院統の(@)天皇を立て、建武式目を発表した。これに対し後醍醐天皇は、(A)の山中にこもって正当の皇位を主張した。
これが(A)の南朝(大覚寺統)と(B)の北朝(持明院統)による南北朝の動乱の始まりである。
解答はこのページ下
用語集ならコレ!
日本史用語集 改訂版 A・B共用
@光明、A吉野、B京都
1336年、京都を制圧した足利尊氏は、持明院統の光明天皇を立て、建武式目を発表した。これに対し後醍醐天皇は、吉野の山中にこもって正当の皇位を主張した。
これが吉野の南朝(大覚寺統)と京都の北朝(持明院統)による南北朝の動乱の始まりである。
前の問題→建武の新政A
次の問題→南北朝の動乱A
中世まとめ、原始・古代まとめ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
◆問題
空欄に適語を入れてください。
1336年、京都を制圧した足利尊氏は、持明院統の(@)天皇を立て、建武式目を発表した。これに対し後醍醐天皇は、(A)の山中にこもって正当の皇位を主張した。
これが(A)の南朝(大覚寺統)と(B)の北朝(持明院統)による南北朝の動乱の始まりである。
解答はこのページ下
用語集ならコレ!
日本史用語集 改訂版 A・B共用
@光明、A吉野、B京都
1336年、京都を制圧した足利尊氏は、持明院統の光明天皇を立て、建武式目を発表した。これに対し後醍醐天皇は、吉野の山中にこもって正当の皇位を主張した。
これが吉野の南朝(大覚寺統)と京都の北朝(持明院統)による南北朝の動乱の始まりである。
前の問題→建武の新政A
次の問題→南北朝の動乱A
中世まとめ、原始・古代まとめ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
こんなヤツです
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN