2023年01月06日

日本史「戦国大名の登場」戦国大名@

日本史「戦国大名の登場」戦国大名@

◆問題

空欄に適語を入れてください。

16世紀前半、近畿地方では(@)氏を中心とする室町幕府内部の権力争いが続いていたが、他の地方では領国を独自に支配する戦国大名が誕生した。

関東では、(A)の乱を機に、鎌倉公方が、足利持氏の子成氏の(B)公方と将軍義政の兄弟政知の(C)公方とに分裂し、関東管領上杉氏も山内・扇谷の両上杉家にわかれて争っていた。この混乱に乗じて15世紀末、京都からくだってきた北条早雲は(C)公方を滅ぼし伊豆を奪い、相模にも進出して小田原を本拠とした。子の北条(D)・孫の(E)の時には、北条氏は関東の大半を支配する大名となった。


解答はこのページ下


用語集ならコレ!

日本史用語集 改訂版 A・B共用


◆解答

@細川、A享徳、B古河、C堀越、D氏綱、E氏康

16世紀前半、近畿地方では細川氏を中心とする室町幕府内部の権力争いが続いていたが、他の地方では領国を独自に支配する戦国大名が誕生した。

関東では、享徳の乱を機に、鎌倉公方が、足利持氏の子成氏の古河公方と将軍義政の兄弟政知の堀越公方とに分裂し、関東管領上杉氏も山内・扇谷の両上杉家にわかれて争っていた。この混乱に乗じて15世紀末、京都からくだってきた北条早雲は堀越公方を滅ぼし伊豆を奪い、相模にも進出して小田原を本拠とした。子の北条氏綱・孫の氏康の時には、北条氏は関東の大半を支配する大名となった。


前の問題→新仏教の発展A
次の問題→戦国大名A


中世まとめ原始・古代まとめ


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 21:00| Comment(0) | TrackBack(0) | 日本史 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2022年共通テスト数学1A第3問

本日配信のメルマガでは、2022年大学入試共通テスト数学1A第3問を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2022年共通テスト数1Aより

第3問

 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、
プレゼントはすべて異なるとする。プレゼントの交換は次の[手順]で行う。

┌―手順――――――――――――――――――――――――――――――――┐
| 外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、|
|各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の   |
|プレゼントを受け取る。                        |
└―――――――――――――――――――――――――――――――――――┘

 交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換を
やり直す。そして、全員が自分以外の人の持参したプレゼントを受け取った
ところで交換会を終了する。

(1) 2人または3人で交換会を開く場合を考える。

 (i) 2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの
受け取り方は[ア]通りある。したがって、1回の交換で交換会が終了する確率は
[イ]/[ウ]である。

 (ii) 3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの
受け取り方は[エ]通りある。したがって、1回目の交換で交換会が終了する確率は
[オ]/[カ]である。

 (iii) 3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は
[キク]/[ケコ]である。


(2) 4人で交換会を開く場合、1回目の交換で交換会が終了する確率を次の[構想]
に基づいて求めてみよう。

┌―構想――――――――――――――――――――――――――――――┐
| 1回目の交換で交換会が[終了しない]プレゼントの受け取り方の総数を|
|求める。そのために、自分の持参したプレゼントを受け取る人数によって|
|場合分けをする。                         |
└―――――――――――――――――――――――――――――――――┘

 1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを
受け取る場合は[サ]通りあり、ちょうど2人が自分のプレゼントを受け取る場合
は[シ]通りある。このように考えていくと、1回目のプレゼントの受け取り方の
うち、1回目の交換で交換会が終了しない受け取り方の総数は[スセ]である。

 したがって、1回目の交換で交換会が終了する確率は[ソ]/[タ]である。


(3) 5人で交換会を開く場合、1回目の交換で交換会が終了する確率は
[チツ]/[テト]である。


(4) A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dが
それぞれ自分以外の人の持参したプレゼントを受け取ったとき、その回で交換会が
終了する条件付き確率は[ナニ]/[ヌネ]である。


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 Pは順列、Cは組み合わせ
 ◆2 同時に起こるなら×、同時に起こらないなら+
 ◆3 2人なら交換するかしないかだけ

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ 共通テスト・センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説

◆1,2は省略します。


 ◆3 2人なら交換するかしないかだけ

では今回の問題です。

「プレゼントの交換会をする」という設定です。

┌―手順――――――――――――――――――――――――――――――――┐
| 外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、|
|各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の   |
|プレゼントを受け取る。                        |
└―――――――――――――――――――――――――――――――――――┘

 交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換を
やり直す。そして、全員が自分以外の人の持参したプレゼントを受け取った
ところで交換会を終了する。

以上のように交換会を行うようです。


まずは2人で交換会をする場合を考えます。

2人でランダムに交換するならば・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN