2023年11月10日

高校数学「微分」y=−3x^4−2x^3+3x^2の最大最小

高校数学「微分」y=−3x4−2x3+3x2の最大最小

y=−3x4−2x3+3x2の−2≦x≦2における最大値・最小値を求めよ。


解答解説はこのページ下


微分積分の問題の解き方の練習には、この書籍も参考にしてみてください。


◆解答解説

y=−3x4−2x3+3x2の−2≦x≦2における最大値・最小値を求めよ。

最大最小なので、微分して極値を求め、定義域の両端も考慮して、最大値・最小値を探していきます。

まずは微分すると、

y'=−12x3−6x2+6x

導関数の値がゼロのときが極値だから、イコールゼロで解きます。

−12x3−6x2+6x=0
2x3+x2−x=0
x(2x2+x−1)=0
x(2x−1)(x+1)=0
よって、x=0,1/2,−1

xがこれらの値のとき、この4次関数は極値をとります。
定義域は−2≦x≦2だから、これらの極値は全て定義域内にありますね。
y=f(x)として、それぞれのy座標を求めていきます。

f(−2)=−3(−2)4−2(−2)3+3(−2)2
   =−48+16+12=−22

f(−1)=−3(−1)4−2(−1)3+3(−1)2
   =−3+2+3=2

f(0)=0

f(1/2)=−3(1/2)4−2(1/2)3+3(1/2)2
    =−3/16−3/8+3/4
    =−3/16−6/16+12/16=3/16

f(2)=−3・24−2・23+3・22
  =−48−16+12=−52

ここでは省略しますが、これらの値をもとに増減表を描いて、y座標を比較すると・・・

x=−1のとき最大値2
x=2のとき最小値−52


◆関連問題
3次関数y=−2x^3+3x^2+12x−3の最大最小
微分積分(数学2)まとめ


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2020年センター数学2B第4問

本日配信のメルマガでは、2020年大学入試センター試験数学2B第4問を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2020年大学入試センター試験数2Bより

第4問

 点Oを原点とする座標空間に2点

  A(3,3,−6),B(2+2√3,2−2√3,−4)

をとる。3点O,A,Bの定める平面をαとする。また、αに含まれる点Cは

  →OA⊥→OC,→OB・→OC=24  ……{1}

を満たすとする。

(1) |→OA|=[ア]√[イ],|→OB|=[ウ]√[エ]であり、
→OA・→OB=[オカ]である。


(2) 点Cは平面α上にあるので、実数s,tを用いて、
→OC=s・→OA+t・→OBと表すことができる。
このとき、{1}からs=[キク]/[ケ],t=[コ]である。
したがって、|→OC|=[サ]√[シ]である。


(3) →CB=([ス],[セ],[ソタ])である。したがって、平面α上の
四角形OABCは[チ]。[チ]に当てはまるものを、次の{0}〜{4}のうちから一つ
選べ。ただし、少なくとも一組の対辺が平行な四角形を台形という。

{0} 正方形である
{1} 正方形でないが、長方形である
{2} 長方形でないが、平行四辺形である
{3} 平行四辺形でないが、台形である
{4} 台形ではない

→OA⊥→OCであるので、四角形OABCの面積は[ツテ]である。


(4) →OA⊥→OD,→OC・→OD=2√6かつz座標が1であるような点Dの
座標は

  ([ト]+√[ナ]/[ニ],[ヌ]−√[ネ]/[ノ],1)である。
このとき∠COD=[ハヒ]°である。

 3点O,C,Dの定める平面をβとする。αとβは垂直であるので、
三角形ABCを底面とする四面体DABCの高さは√[フ]である。したがって、
四面体DABCの体積は[ヘ]√[ホ]である。


※分数は(分子)/(分母)、xの2乗はx^2で、ベクトルの矢印は一部省略、
マル1は{1}、マーク部分の□は[ ]で表記しています。

  ベクトルの解説記事→http://a-ema.seesaa.net/article/478238347.html

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★     茨城県水戸市、常陸太田市の個別指導教室         ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 ベクトルの成分と大きさ
 ◆2 ベクトルの足し算とかけ算
 ◆3 絶対値は三平方の定理
 ◆4 内積は「掛けて足す」

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1,2は省略します。


 ◆3 絶対値は三平方の定理

では今回の問題です。

まず最初は、→OAと→OBの絶対値を求める問題となっています。

ベクトルの絶対値は、要するにその長さなので、◆1でも触れたように、三平方の
定理から求めることができます。

→OA=(3,3,−6)なので、

|→OA|=√{3^2+3^2+(−6)^2}
    =√(9+9+36)
    =√54
    =3√6

→OBも同様に、→OB=(2+2√3,2−2√3,−4)なので、

|→OB|=√{(2+2√3)^2+(2−2√3)^2+(−4)^2}
    =√(4+8√3+12+4−8√3+12+16)
    =√48
    =4√3

よって、[ア]=3,[イ]=6,[ウ]=4,[エ]=3


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆4 内積は「掛けて足す」

続いて、→OA・→OBを求めます。

◆1でも述べたように、「内積はそれぞれの成分の積を合計する」ので、ここでも
→OAと→OBのx成分、y成分、z成分をそれぞれかけて合計します。

→OA=(3,3,−6),→OB=(2+2√3,2−2√3,−4)だから・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
 youtube EMA Atsushiチャンネル:https://www.youtube.com/@emajuku
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

日本史「第一次世界大戦と日本」第一次世界大戦A

日本史「第一次世界大戦と日本」第一次世界大戦A

◆問題

空欄に適語を入れてください。

「(@)」と呼ばれていたバルカン半島の一角で、1914年6月、オーストリア皇太子が親露的なセルビア人に暗殺された(A)事件をきっかけに、(B)と(C)のあいだでの戦争に発展し、4年余りにおよぶ総力戦となった(第一次世界大戦)。


解答はこのページ下


用語集ならコレ!

日本史用語集 改訂版 A・B共用


◆解答

@ヨーロッパの火薬庫、Aサライェヴォ、B三国同盟、C三国協商

ヨーロッパの火薬庫」と呼ばれていたバルカン半島の一角で、1914年6月、オーストリア皇太子が親露的なセルビア人に暗殺されたサライェヴォ事件をきっかけに、三国同盟と三国協商のあいだでの戦争に発展し、4年余りにおよぶ総力戦となった(第一次世界大戦)。


前の問題→第一次世界大戦@
次の問題→日本の中国進出@


近代・現代まとめ
近世まとめ中世まとめ原始・古代まとめ


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 08:00| Comment(0) | TrackBack(0) | 日本史 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN