高校化学「化学平衡」「電離定数」アンモニア水の電離平衡A
◆問題
アンモニア水中では、次のような電離平衡が成立している。
NH3+H2O⇄NH4++OH-
電離定数Kb=1.8×10-5mol/L,水のイオン積Kw=1.0×10-14(mol/L)2、アンモニアの電離度αは1より充分に小さいとして、次の各問いに答えよ。
(1) c[mol/L]のアンモニア水中のアンモニアの電離度αを、cとKbを用いて表せ。
(2) 2.0mol/Lのアンモニア水中の水酸化物イオン濃度を求めよ。
この記事では、(2)を解説します。
★★ お知らせ ★★
AE個別学習室(えまじゅく)水戸教室では、学校の授業の補習、定期テスト対策だけでなく、「大学入試共通テスト」の対策授業を行っています。
従来のセンター試験や試行テストの内容を踏まえて、理系文系全科目の指導が可能です。
マンツーマンの授業なので「ゼロからのスタートの人は中学の復習から」「基本ができている人は応用問題の解き方中心に」など、ひとりひとりの状況に合わせて授業を行います。
適切な時期に適切な対策をすれば、どんな目標でも達成可能です。志望校を諦める前に、まずは一度ご相談ください。
◆解説
(1)で、電離度αは、
α=√(Kb/c)
であることがわかりました。
アンモニア2.0mol/Lのうちαの割合だけ電離すると考えられるので、2.0にαを掛けます。
[OH-]=2.0×√(Kb/C)
=2.0×√(1.8×10-5/2.0)
=2.0×√(0.9×10-5)
=2.0×√(9.0×10-6)
=2.0×3.0×10-3
=6.0×10-3[mol/L]
次の問題→このアンモニア水のpH
◆関連問題
酢酸の電離平衡、酢酸1.0[mol]とエタノール1.0[mol]の混合物の化学平衡
化学平衡まとめ
江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2023年12月15日
本日配信のメルマガ。2023年共通テスト数学2B第2問[2]
本日配信のメルマガでは、2023年大学入試共通テスト数学2B第2問[2]を解説します。
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2023年共通テスト数2Bより
第2問
[2]
(1) 定積分∫[0〜30]{(1/5)x+3}dxの値は[タチツ]である。
また、関数(1/100)x^2−(1/6)x+5の不定積分は
∫{(1/100)x^2−(1/6)x+5}dx
=(1/[テトナ])x^3−(1/[ニヌ])x^2+[ネ]x+C
である。ただし、Cは積分定数とする。
(2) ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題に
なる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってから
の気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを
知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの
気温の折れ線グラフを見ながら、次のように考えることにした。
図1はこちら→http://www.a-ema.com/img/center2023math2b22a.png
図1 6時間ごとの気温の折れ線グラフ
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った
時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)
また、x日後の気温をy℃とする。このとき、yはxの関数であり、これを
y=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の[設定]で
考えることにした。
┌―[設定]――――――――――――――――――――――――――――――――┐
| 正の整数tに対して、f(x)を0からtまで積分した値をS(t)とする。 |
|すなわち、S(t)=∫[0〜t]f(x)dxとする。このS(t)が400に到達した|
|とき、ソメイヨシノが開花する。 |
└――――――――――――――――――――――――――――――――――――┘
[設定]のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2のように直線と
みなしてソメイヨシノの開花日時を考えることにした。
図2はこちら→http://www.a-ema.com/img/center2023math2b22b.png
図2 図1のグラフと、太郎さんが直線とみなしたy=f(x)のグラフ
(i) 太郎さんは
f(x)=(1/5)x+3 (x≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから[ノ]となる。
[ノ]の解答群
┌――――――――――――――――――――――――┐
|{0} 30日後 {1} 35日後 {2} 40日後 |
|{3} 45日後 {4} 50日後 {5} 55日後 |
|{6} 60日後 {7} 65日後 |
└――――――――――――――――――――――――┘
(ii) 太郎さんと花子さんは、2月に入ってから30日後以降の気温について話を
している。
┌―――――――――――――――――――――――――――――――――――┐
|太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。 |
|花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を |
| 表す関数が2次関数の場合も考えてみようか。 |
└―――――――――――――――――――――――――――――――――――┘
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=(1/5)x+3 ……{1}
とし、x≧30のときは
f(x)=(1/100)x^2−(1/6)x+5 ……{2}
として考えた。なお、x=30のとき{1} の右辺の値と{2}の右辺の値は一致する。
花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
∫[0〜30]{(1/5)x+3)dx=[タチツ]
であり
∫[30〜40]{(1/100)x^2−(1/6)x+5}dx=115
となることがわかる。
また、x≧30の範囲においてf(x)は増加する。よって
∫[30〜40]f(x)dx[ハ]∫[40〜50]f(x)dx
であることがわかる。以上よりソメイヨシノの開花日時は2月に入ってから[ヒ]と
なる。
[ハ]の解答群
┌――――――――――――――――――――――――┐
|{0} < {1} = {2} > |
└――――――――――――――――――――――――┘
[ヒ]の解答群
┌――――――――――――――――――――――――┐
|{0} 30日後より前 |
|{1} 30日後 |
|{2} 30日後より後、かつ40日後より前 |
|{3} 40日後 |
|{4} 40日後より後、かつ50日後より前 |
|{5} 50日後 |
|{6} 50日後より後、かつ60日後より前 |
|{7} 60日後 |
|{8} 60日後より後 |
└――――――――――――――――――――――――┘
※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。
微分積分の解説記事→http://a-ema.seesaa.net/article/478475977.html
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 積分は微分の逆
◆2 交点なら連立方程式
◆3 基本的な不定積分の計算
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1は省略します。
◆2 基本的な定積分の計算
では今回の問題です。
(1) 定積分∫[0〜30]{(1/5)x+3}dxの値は[タチツ]である。
まずはコレを計算します。
定積分の計算は、「指数を1増やして、もとの指数+1の逆数をかける」そして、
「代入して引き算する」という手順です。
∫[0〜30]{(1/5)x+3}dx
=[(1/5)(1/2)x^2+3x][0〜30]
=[(1/10)x^2+3x][0〜30]
=(1/10)・30^2+3×30−0
=90+90
=180
よって、[タチツ]=180
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
◆3 基本的な不定積分の計算
次は、「関数(1/100)x^2−(1/6)x+5の不定積分」を計算します。
やはり、「指数を1増やして、もとの指数+1の逆数をかける」操作をします。
∫{(1/100)x^2−(1/6)x+5}dx
=(1/100)(1/3)x^3−(1/6)(1/2)x^2+5x+C
=・・・
(以下略)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
youtube EMA Atsushiチャンネル:https://www.youtube.com/@emajuku
------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html
【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html
【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html
★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html
★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html
【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html
【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2023年共通テスト数2Bより
第2問
[2]
(1) 定積分∫[0〜30]{(1/5)x+3}dxの値は[タチツ]である。
また、関数(1/100)x^2−(1/6)x+5の不定積分は
∫{(1/100)x^2−(1/6)x+5}dx
=(1/[テトナ])x^3−(1/[ニヌ])x^2+[ネ]x+C
である。ただし、Cは積分定数とする。
(2) ある地域では、毎年3月頃「ソメイヨシノ(桜の種類)の開花予想日」が話題に
なる。太郎さんと花子さんは、開花日時を予想する方法の一つに、2月に入ってから
の気温を時間の関数とみて、その関数を積分した値をもとにする方法があることを
知った。ソメイヨシノの開花日時を予想するために、二人は図1の6時間ごとの
気温の折れ線グラフを見ながら、次のように考えることにした。
図1はこちら→http://www.a-ema.com/img/center2023math2b22a.png
図1 6時間ごとの気温の折れ線グラフ
xの値の範囲を0以上の実数全体として、2月1日午前0時から24x時間経った
時点をx日後とする。(例えば、10.3日後は2月11日午前7時12分を表す。)
また、x日後の気温をy℃とする。このとき、yはxの関数であり、これを
y=f(x)とおく。ただし、yは負にはならないものとする。
気温を表す関数f(x)を用いて二人はソメイヨシノの開花日時を次の[設定]で
考えることにした。
┌―[設定]――――――――――――――――――――――――――――――――┐
| 正の整数tに対して、f(x)を0からtまで積分した値をS(t)とする。 |
|すなわち、S(t)=∫[0〜t]f(x)dxとする。このS(t)が400に到達した|
|とき、ソメイヨシノが開花する。 |
└――――――――――――――――――――――――――――――――――――┘
[設定]のもと、太郎さんは気温を表す関数y=f(x)のグラフを図2のように直線と
みなしてソメイヨシノの開花日時を考えることにした。
図2はこちら→http://www.a-ema.com/img/center2023math2b22b.png
図2 図1のグラフと、太郎さんが直線とみなしたy=f(x)のグラフ
(i) 太郎さんは
f(x)=(1/5)x+3 (x≧0)
として考えた。このとき、ソメイヨシノの開花日時は2月に入ってから[ノ]となる。
[ノ]の解答群
┌――――――――――――――――――――――――┐
|{0} 30日後 {1} 35日後 {2} 40日後 |
|{3} 45日後 {4} 50日後 {5} 55日後 |
|{6} 60日後 {7} 65日後 |
└――――――――――――――――――――――――┘
(ii) 太郎さんと花子さんは、2月に入ってから30日後以降の気温について話を
している。
┌―――――――――――――――――――――――――――――――――――┐
|太郎:1次関数を用いてソメイヨシノの開花日時を求めてみたよ。 |
|花子:気温の上がり方から考えて、2月に入ってから30日後以降の気温を |
| 表す関数が2次関数の場合も考えてみようか。 |
└―――――――――――――――――――――――――――――――――――┘
花子さんは気温を表す関数f(x)を、0≦x≦30のときは太郎さんと同じように
f(x)=(1/5)x+3 ……{1}
とし、x≧30のときは
f(x)=(1/100)x^2−(1/6)x+5 ……{2}
として考えた。なお、x=30のとき{1} の右辺の値と{2}の右辺の値は一致する。
花子さんの考えた式を用いて、ソメイヨシノの開花日時を考えよう。(1)より
∫[0〜30]{(1/5)x+3)dx=[タチツ]
であり
∫[30〜40]{(1/100)x^2−(1/6)x+5}dx=115
となることがわかる。
また、x≧30の範囲においてf(x)は増加する。よって
∫[30〜40]f(x)dx[ハ]∫[40〜50]f(x)dx
であることがわかる。以上よりソメイヨシノの開花日時は2月に入ってから[ヒ]と
なる。
[ハ]の解答群
┌――――――――――――――――――――――――┐
|{0} < {1} = {2} > |
└――――――――――――――――――――――――┘
[ヒ]の解答群
┌――――――――――――――――――――――――┐
|{0} 30日後より前 |
|{1} 30日後 |
|{2} 30日後より後、かつ40日後より前 |
|{3} 40日後 |
|{4} 40日後より後、かつ50日後より前 |
|{5} 50日後 |
|{6} 50日後より後、かつ60日後より前 |
|{7} 60日後 |
|{8} 60日後より後 |
└――――――――――――――――――――――――┘
※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。
微分積分の解説記事→http://a-ema.seesaa.net/article/478475977.html
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 積分は微分の逆
◆2 交点なら連立方程式
◆3 基本的な不定積分の計算
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1は省略します。
◆2 基本的な定積分の計算
では今回の問題です。
(1) 定積分∫[0〜30]{(1/5)x+3}dxの値は[タチツ]である。
まずはコレを計算します。
定積分の計算は、「指数を1増やして、もとの指数+1の逆数をかける」そして、
「代入して引き算する」という手順です。
∫[0〜30]{(1/5)x+3}dx
=[(1/5)(1/2)x^2+3x][0〜30]
=[(1/10)x^2+3x][0〜30]
=(1/10)・30^2+3×30−0
=90+90
=180
よって、[タチツ]=180
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
◆3 基本的な不定積分の計算
次は、「関数(1/100)x^2−(1/6)x+5の不定積分」を計算します。
やはり、「指数を1増やして、もとの指数+1の逆数をかける」操作をします。
∫{(1/100)x^2−(1/6)x+5}dx
=(1/100)(1/3)x^3−(1/6)(1/2)x^2+5x+C
=・・・
(以下略)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
youtube EMA Atsushiチャンネル:https://www.youtube.com/@emajuku
------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html
【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html
【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html
★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html
★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html
【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html
【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html
ラベル:数学
日本史「市民生活の変容と大衆文化」学問と芸術@
日本史「市民生活の変容と大衆文化」学問と芸術@
◆問題
空欄に適語を入れてください。
大正デモクラシーの風潮のもとで、多様な学問や芸術が発達した。『東洋経済新聞』などで急進的自由主義が主張される一方、(@)主義は知識人に大きな影響を与えた。1917年に出版された河上肇の『貧乏物語』は広範な読者を獲得した。
西田幾多郎は『善の研究』を著して独自の哲学体系を打ち立て、和辻哲郎は『古寺巡礼』『風土』などを著した。津田左右吉は『A』『B』に科学的分析を加え、柳田国男は民間伝承の調査・研究を通じて、「常民」の生活史を明らかにする民俗学を確立した。
解答はこのページ下
用語集ならコレ!
日本史用語集 改訂版 A・B共用
◆解答
@マルクス、A古事記、B日本書紀
大正デモクラシーの風潮のもとで、多様な学問や芸術が発達した。『東洋経済新聞』などで急進的自由主義が主張される一方、マルクス主義は知識人に大きな影響を与えた。1917年に出版された河上肇の『貧乏物語』は広範な読者を獲得した。
西田幾多郎は『善の研究』を著して独自の哲学体系を打ち立て、和辻哲郎は『古寺巡礼』『風土』などを著した。津田左右吉は『古事記』『日本書紀』に科学的分析を加え、柳田国男は民間伝承の調査・研究を通じて、「常民」の生活史を明らかにする民俗学を確立した。
前の問題→大衆文化の誕生A
次の問題→学問と芸術A
近代・現代まとめ
近世まとめ、中世まとめ、原始・古代まとめ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
◆問題
空欄に適語を入れてください。
大正デモクラシーの風潮のもとで、多様な学問や芸術が発達した。『東洋経済新聞』などで急進的自由主義が主張される一方、(@)主義は知識人に大きな影響を与えた。1917年に出版された河上肇の『貧乏物語』は広範な読者を獲得した。
西田幾多郎は『善の研究』を著して独自の哲学体系を打ち立て、和辻哲郎は『古寺巡礼』『風土』などを著した。津田左右吉は『A』『B』に科学的分析を加え、柳田国男は民間伝承の調査・研究を通じて、「常民」の生活史を明らかにする民俗学を確立した。
解答はこのページ下
用語集ならコレ!
日本史用語集 改訂版 A・B共用
◆解答
@マルクス、A古事記、B日本書紀
大正デモクラシーの風潮のもとで、多様な学問や芸術が発達した。『東洋経済新聞』などで急進的自由主義が主張される一方、マルクス主義は知識人に大きな影響を与えた。1917年に出版された河上肇の『貧乏物語』は広範な読者を獲得した。
西田幾多郎は『善の研究』を著して独自の哲学体系を打ち立て、和辻哲郎は『古寺巡礼』『風土』などを著した。津田左右吉は『古事記』『日本書紀』に科学的分析を加え、柳田国男は民間伝承の調査・研究を通じて、「常民」の生活史を明らかにする民俗学を確立した。
前の問題→大衆文化の誕生A
次の問題→学問と芸術A
近代・現代まとめ
近世まとめ、中世まとめ、原始・古代まとめ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
こんなヤツです

年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN