2024年08月31日

高校数学「場合の数・確率」a>b>c>dの4桁の整数

高校数学「場合の数・確率」a>b>c>dの4桁の整数

■ 問題

4桁の自然数の千の位、百の位、十の位、一の位の数字を、それぞれa,b,c,dとする。次の条件を満たす自然数は何個あるか求めよ。

(1) a>b>c>d


↓解答解説はお知らせの下に↓


★★ お知らせ ★★

AE個別学習室(えまじゅく)水戸教室では、「大学入試共通テスト」の対策授業を行っています。従来のセンター試験や試行テストの内容を踏まえて、基礎から医学部など満点を目指す人まで、理系文系全科目の指導が可能です。
マンツーマンの授業なので「ゼロからのスタートの人は中学の復習から」「基本ができている人は応用問題の解き方中心に」など、ひとりひとりの状況に合わせて授業を行います。浪人生や社会人の再受験も基礎から丁寧に指導します!
適切な時期に適切な対策をすれば、どんな目標でも達成可能です。志望校を諦める前に、まずは一度ご相談ください。


■ 解答解説

4桁の整数をつくるには、当然4つの数字が必要です。

a>b>c>dの順になる場合を一つ一つ数えていけば、一応解決可能ですが、かなり大変ですね。

ではどうすれば良いかというと・・・

4つの数字をランダムに選んで、a>b>c>dの順に並べる。と考えると良いです。

0〜9までの10個の数字のうち4つを選び出す。ということで、

 104
=(10・9・8・7)/(4・3・2・1)
=10・3・7
=210

つまり、a>b>c>dとなるような4桁の整数は210個あります。


次の問題→a<b<c<dのとき


場合の数・確率の練習には、以下の書籍もおすすめです!アマゾンのレビューでも高評価をいただいています。
10秒でわかる!高校数学1A「場合の数・確率」の考え方


◆関連項目
確率まとめ


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2024年共通テスト追試英語第3問B 2つめの記事

本日配信のメルマガでは、2024年大学入学共通テスト追試英語第3問Bの2つめの記事までの内容を掲載します。


【高校英語】共通テストの英文解釈
http://www.mag2.com/m/0001641009.html


■ 問題

2024年大学入学共通テスト追試より

第3問

B You have been asked to keep an online diary available only to other
students in the class, to follow at least one other student and to respond
to their posts, You chose to read Christina's diary because you are also
thinking of moving into an apartment.


I'm so happy to be leaving the university dorm and moving into a quiet
apartment :-)! Renting an apartment is expensive in Osaka! The day before
yesterday, I finally received a money transfer from my mum and dad in
Singapore and was able to pay the apartment agency. I'd wanted to move in
this Wednesday, but they say the earliest I can move in is Thursday. But
that's my birthday, and I have other more important things to do :-), so
I'll be getting my key on Friday the 24th at 9 a.m.
                         2023.03.19 Sun. 11:16


Because of the design of my new apartment, I've had to think carefully about
the order I'm having stuff delivered. You have to walk through the
kitchen/living room to get to the bedroom, and the only place I can put my
second-hand washing machine is right next to genkan. So my big wardrobe,
a present from my mum and dad, is being delived first, tomorrow, with the
special permission of the agency. I decided to have the washing machine
delivered the week after I move in and everything has settled down. The
delivery of my fridge and kitchen table is scheduled for late afternoon on
the day I move in.
                         2023.03.21 Tue. 22:24


つづく


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★     茨城県水戸市、常陸太田市の個別指導教室         ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ スラッシュリーディング

B You have been asked / to keep an online diary / available
/ only to other students / in the class,
あなたは頼まれた / オンラインの日記をつけることを / 利用可能な
/ 他の学生だけに / クラスで

/ to follow / at least / one other student / and to respond
/ to their posts.
フォローするために / 少なくとも / 一人の他の学生を / そして応答するために
/ 彼らの投稿に

You chose to read / Christina's diary / because / you are also thinking
/ of moving into an apartment.
あなたは読むことを選んだ / Christinaの日記を / なぜなら / あなたも考えている
/ あるアパートに引っ越すことを


(以下略)


(有料版では、解説の続きも掲載しています)
 http://www.mag2.com/m/0001641009.html

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

解説の続きは、本日21時配信予定の

【高校英語】共通テストの英文解釈
 http://www.mag2.com/m/0001641009.html

に掲載します!
全て長文問題になった大学入学共通テスト。今まで以上に読解力が求められます。
翻訳も行っている著者が、スラッシュリーディング、全文訳とともに解説します。
月・水・土配信。\550/月。初月無料です。

※追試はスラッシュリーディングのみの掲載とします。


ブログにもメルマガの記事を分割して掲載しています。

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
------------------------------------------------------------------------
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。

=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:英語
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

中学歴史「記述問題」まとめ

中学歴史「記述問題」まとめ


1行から2行程度で説明する記述問題です。


第一次世界大戦とアジア
日本が第一次世界大戦に連合国側として参戦した理由など


大正デモクラシーと大衆文化
米騒動の説明など


世界恐慌と日本の中国侵略
ブロック経済の説明など


第二次世界大戦
「戦争中、日本では中学生や女学生も軍需工場などで働かされた。その理由を「兵士」「労働力」という語句を使って…」など


どんどん追加していきます!
リクエストがあればお気軽にどうぞ!


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 09:00| Comment(0) | TrackBack(0) | 中学社会 | このブログの読者になる | 更新情報をチェックする

2024年08月30日

本日配信のメルマガ。2022年共通テスト数学2B第1問[2]

本日配信のメルマガでは、2022年大学入学共通テスト数学2B第1問[2]を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2022年共通テスト数2Bより

第1問

[2] a,bは正の実数であり、a≠1,b≠1を満たすとする。太郎さんは
log[a]bとlog[b]aの大小関係を調べることにした。

(1) 太郎さんは次のような考察をした。

 まず、log[3]9=[ス],log[9]3=1/[ス]である。この場合

  log[3]9>log[9]3

が成り立つ。

 一方、log[1/4][セ]=−3/2,log[セ](1/4)=−2/3である。
この場合

  log[1/4][セ]<log[セ](1/4)

が成り立つ。


(2) ここで

  log[a]b=t  ……{1}

とおく。

 (1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、それが正しい
ことを確かめることにした。

  log[b]a=1/t  ……{2}

 {1}により、[ソ]である。このときにより[タ]が得られ、{2}が成り立つことが
確かめられる。

[ソ]の解答群
┌―――――――――――――――――――――――┐
|{0} a^b=t  {1} a^t=b  {2} b^a=t |
|{3} b^t=a  {4} t^a=b  {5} t^b=a |
└―――――――――――――――――――――――┘

[タ]の解答群
┌―――――――――――――――――――――――――――――┐
|{0} a=t^(1/b)  {1} a=b^(1/t)  {2} b=t^(1/a) |
|{3} b=a^(1/t)  {4} t=b^(1/a)  {5} t=a^(1/b) |
└―――――――――――――――――――――――――――――┘


(3) 次に、太郎さんは(2)の考察をもとにして

  t>1/t ……{3}

を満たす実数t(t≠0)の値の範囲を求めた。

┌―太郎さんの考察―――――――――――――――――――――――――┐
| t>0ならば、{3}の両辺にtを掛けることにより、t^2>1を得る。 |
|このようなt(t>0)の値の範囲は1<tである。          |
| t<0ならば、{3}の両辺にtを掛けることにより、t^2<1を得る。 |
|このようなt(t<0)の値の範囲は−1<t<0である。       |
└―――――――――――――――――――――――――――――――――┘

この考察により、{3}を満たすt(t≠0)の値の範囲は

  −1<t<0,1<tであることがわかる。

 ここで、aの値を一つ定めたとき、不等式

  log[a]b>log[b]a ……{4}

を満たす実数b(b>0,b≠1)の値の範囲について考える。

 {4}を満たすbの値の範囲はa>1のときは[チ]であり、0<a<1のときは
[ツ]である。

[チ]の解答群
┌―――――――――――――――――――――――――――――――┐
|{0} 0<b<1/a,1<b<a  {1} 0<b<1/a,a<b |
|{2} 1/a<b<1,1<b<a  {3} 1/a<b<1,a<b |
└―――――――――――――――――――――――――――――――┘

[ツ]の解答群
┌―――――――――――――――――――――――――――――――┐
|{0} 0<b<a,1<b<1/a  {1} 0<b<a,1/a<b |
|{2} a<b<1,1<b<1/a  {3} a<b<1,1/a<b |
└―――――――――――――――――――――――――――――――┘


(4) p=12/13,q=12/11,r=14/13とする。

 次の{0}〜{3}のうち、正しいものは[テ]である。

[テ]の解答群
┌―――――――――――――――――――――――――――――――┐
|{0} log[p]q>log[q]pかつlog[p]r>log[r]p   |
|{1} log[p]q>log[q]pかつlog[p]r<log[r]p   |
|{2} log[p]q<log[q]pかつlog[p]r>log[r]p   |
|{3} log[p]q<log[q]pかつlog[p]r<log[r]p   |
└―――――――――――――――――――――――――――――――┘


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

  指数・対数まとめ→http://a-ema.seesaa.net/article/477928170.html

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★     茨城県水戸市、常陸太田市の個別指導教室         ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 分数は累乗根・マイナスは逆数
 ◆2 指数・対数の関係
 ◆3 対数の計算法則
 ◆4 log[a]c=bはa^b=c
 ◆5 1/2乗はルート、マイナスの指数は逆数

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ 共通テト・センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説


◆1〜3は省略します。


 ◆4 log[a]c=bはa^b=c

では今回の問題です。
まずは対数の値を求めます。

◆2でも触れた「★a^b=cならばlog[a]c=b」という指数・対数の関係を
使います。

log[3]9は、3を9にするには何乗か?なので、2乗ですね。つまり、

log[3]9=2

log[9]3は、9を3にするには何乗か?なので、1/2乗ですね。
√9=3であり、平方根は1/2乗です。だから、

log[9]3=1/2

よって、[ス]=2

ちなみに、2>1/2だからlog[3]9>log[9]3ですね。


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆5 1/2乗はルート、マイナスの指数は逆数

同様にして、log[1/4][セ]=−3/2とlog[セ](1/4)=−2/3について
考えます。[セ]の部分をxとすると、log[1/4]x=−3/2だから、

x=(1/4)^(-3/2)

1/2乗は√だから、


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
 youtube EMA Atsushiチャンネル:https://www.youtube.com/@emajuku
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

中学歴史「第二次世界大戦」記述問題

中学歴史「第二次世界大戦」記述問題


◆問題

@
1940年の日本の南進について、次の文の空欄を埋めよ。
日本は日中戦争の長期化をうけて、[ ]東南アジアに進出した。

A
戦争中、日本では中学生や女学生も軍需工場などで働かされた。その理由を「兵士」「労働力」という語句を使って簡単に説明せよ。

B
ポツダム宣言とは何か?「連合国」「日本」「無条件降伏」の語句を使って説明せよ。




高校入試レベルの記述問題では、文字数の指定がなくても、1行〜2行(20字〜40字程度)で記述すると良いと思います。


解答はお知らせの下へ!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=================== お知らせ ======================

★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 オンラインでも複数人同時指導対応しています。
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


◆解答例

@
1940年の日本の南進について、次の文の空欄を埋めよ。
日本は日中戦争の長期化をうけて、[石油などの資源を確保するために]東南アジアに進出した。

A
戦争中、日本では中学生や女学生も軍需工場などで働かされた。その理由を「兵士」「労働力」という語句を使って簡単に説明せよ。
→多くの成人男性が兵士として戦場に送られ、労働力が不足したため。

B
ポツダム宣言とは何か?「連合国」「日本」「無条件降伏」の語句を使って説明せよ。
→連合国が日本に無条件降伏を求めたもの。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 08:00| Comment(0) | TrackBack(0) | 中学社会 | このブログの読者になる | 更新情報をチェックする

2024年08月29日

高校数学「三角関数」三角方程式cos(2θ+π/3)=√3/2

高校数学「三角関数」三角方程式cos(2θ+π/3)=√3/2

■問題

三角方程式cos(2θ+π/3)=√3/2を解け。ただし、0≦θ<2πとする。


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!



■解答解説

以前の問題似ていますね。
でも、角度のθに係数2がついているところに注意が必要です。
こういった場合は、まず角度の部分の範囲を求めておくとよいです。

0≦θ<2πだから、2倍すると0≦2θ<4πです。
さらにπ/3を足すと、

π/3≦(2θ+π/3)<(13/3)π

となります。

2θ+π/3=xとおくと、cosx=√3/2です。
コサインの値が√3/2になる場合はどんな場合か?を単位円を描いて考えると、30°と330°の位置ですね。

まずこの場合のxの値をラジアンで表すと、1周目はπ/6,(11/6)πです。
π/6はxの範囲内に入っていないので除外します。

2周目は(13/6)π,(23/6)πです。
これらはどちらも範囲内の値です。

3周目は(25/6)π,(35/6)πです。
(35/6)πは範囲外になってしまいました。

ということで、x=(11/6)π,(13/6)π,(23/6)π,(25/6)πです。

さらに、xをもとに戻せば、

2θ+π/3=(11/6)π,(13/6)π,(23/6)π,(25/6)πです。

あとはθ=●●の形になるように計算していきます。

2θ=(9/6)π,(11/6)π,(21/6)π,(23/6)π
 θ=(9/12)π,(11/12)π,(21/12)π,(23/12)π
 θ=(3/4)π,(11/12)π,(7/4)π,(23/12)π


◆関連項目
三角関数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 08:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

2024年08月28日

高校数学「積分」接線の傾きが6x2+2x+3の関数

高校数学「積分」接線の傾きが6x2+2x+3の関数

■ 問題

曲線y=f(x)は、点(−2,3)通る。また、この曲線の接線の傾きは6x2+2x+3で表される。このようなf(x)を求めよ。


解答解説はこのページ下に


★★ お知らせ ★★

AE個別学習室(えまじゅく)水戸教室では、「大学入学共通テスト」の対策授業を行っています。理系文系全科目の指導が可能です。
平日昼間に授業可能な既卒生・社会人の方も歓迎します!
マンツーマンの授業なので「ゼロからのスタートの人は中学の復習から」「基本ができている人は応用問題の解き方中心に」など、ひとりひとりの状況に合わせて授業を行います。
適切な時期に適切な対策をすれば、どんな目標でも達成可能です。志望校を諦める前に、まずは一度ご相談ください。


■ 解答解説

接線の傾きは6x2+2x+3ということは、f'(x)=6x2+2x+3ですね。
微分したものがコレだから、積分すればf(x)の式になる。と考えられます。

f(x)=∫(6x2+2x+3)dx
  =2x3+x2+3x+C

y=f(x)は(−2,3)通るので、代入します。

 2(−2)3+(−2)2+3・(−2)+C
=−16+4−6+C
=−18+C=3
     C=21

というわけで、

f(x)=2x3+x2+3x+21


◆関連問題
接線の傾きが3x2−4xの関数の式
微分積分まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2024年共通テスト追試英語第3問B 1つめの記事

本日配信のメルマガでは、2024年大学入学共通テスト追試英語第3問Bの本文の3/19の記事までの内容を掲載します。


【高校英語】共通テストの英文解釈
http://www.mag2.com/m/0001641009.html


■ 問題

2024年大学入学共通テスト追試より

第3問

B You have been asked to keep an online diary available only to other
students in the class, to follow at least one other student and to respond
to their posts, You chose to read Christina's diary because you are also
thinking of moving into an apartment.


I'm so happy to be leaving the university dorm and moving into a quiet
apartment :-)! Renting an apartment is expensive in Osaka! The day before
yesterday, I finally received a money transfer from my mum and dad in
Singapore and was able to pay the apartment agency. I'd wanted to move in
this Wednesday, but they say the earliest I can move in is Thursday. But
that's my birthday, and I have other more important things to do :-), so
I'll be getting my key on Friday the 24th at 9 a.m.
                         2023.03.19 Sun. 11:16


つづく


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★     茨城県水戸市、常陸太田市の個別指導教室         ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ スラッシュリーディング

B You have been asked / to keep an online diary / available
/ only to other students / in the class,
あなたは頼まれた / オンラインの日記をつけることを / 利用可能な
/ 他の学生だけに / クラスで

/ to follow / at least / one other student / and to respond
/ to their posts.
フォローするために / 少なくとも / 一人の他の学生を / そして応答するために
/ 彼らの投稿に

You chose to read / Christina's diary / because / you are also thinking
/ of moving into an apartment.
あなたは読むことを選んだ / Christinaの日記を / なぜなら / あなたも考えている
/ あるアパートに引っ越すことを


(以下略)


(有料版では、解説の続きも掲載しています)
 http://www.mag2.com/m/0001641009.html

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

解説の続きは、本日21時配信予定の

【高校英語】共通テストの英文解釈
 http://www.mag2.com/m/0001641009.html

に掲載します!
全て長文問題になった大学入学共通テスト。今まで以上に読解力が求められます。
翻訳も行っている著者が、スラッシュリーディング、全文訳とともに解説します。
月・水・土配信。\550/月。初月無料です。

※追試はスラッシュリーディングのみの掲載とします。


ブログにもメルマガの記事を分割して掲載しています。

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
------------------------------------------------------------------------
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。

=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:英語
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

中学英語「間接疑問文」「どこに行くべきか」

中学英語「間接疑問文」「どこに行くべきか」

EEvideoの学校向けコンテンツを使って中学3年生に英語の指導をしています。
その中で登場した問題から1問ピックアップして解説します。


◆問題

「それは人々がどこに行くべきかを示しています。」という意味の英文になるよう、空欄に適語を入れてください。

It [ ] where people [ ] [ ].


解答解説はお知らせの下へ!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=================== お知らせ ======================

★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 オンラインでも複数人同時指導対応しています。
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆解答解説

「示しています」を表せる動詞はいくつかありますが、中学英語では「show」を使うと良いでしょう。
主語itは三人称単数なので、動詞にはsがつきます。

「どこに行くべきか」は間接疑問文の言い方になるので、疑問詞where以降は普通の文と同様に、「主語+述語」の順番になります。

「〜すべき」は助動詞shouldを使ってみましょう。

というわけで、

It shows where people should go.

これで完成です!



その他質問などあれば、何でもどうぞ


------------------------------------------------------------------------

江間淳著

「めんどくさいと寝ちゃう人のためのやりなおし中学英文法問題集」
 https://amzn.to/3gPVr99

もご利用ください。
新課程で中学英語に導入された、現在完了進行形や仮定法のページもあります。
塾の生徒にも使ってもらっていますが、好評です!皆さんもこの本で一緒に
中学英語をマスターしましょう!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
------------------------------------------------------------------------
    発行者:AE個別学習室代表/プロ家庭教師/翻訳者の江間淳
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
 youtube EMA Atsushiチャンネル:https://www.youtube.com/@emajuku
------------------------------------------------------------------------
ラベル:英語
posted by えま at 08:00| Comment(0) | TrackBack(0) | 中学英語 | このブログの読者になる | 更新情報をチェックする

2024年08月27日

高校数学「三角関数」y=sinx−cosxの最大最小

高校数学「三角関数」y=sinx−cosxの最大最小

■問題

y=sinx−cosxの最大値・最小値を求めよ。ただし、0≦x<2πとする。


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!



■解答解説

今回の式のように、サインもコサインも1次式の場合は三角関数の合成をやります。

asinθ+bcosθの形とみなせば、a=1,b=−1だから、

r=√{12+(−1)2}=√2

そして、横がa,縦がb,斜辺がrの直角三角形を考えると、この場合は1:1:√2の直角三角形です。
右に1,下に1だからα=−45°となります。つまり、α=−π/4

というわけで、与式は

y=√2・sin(x−π/4)

と書き換えることができます。
あとはこれの最大値・最小値を考えます。

サインの値自体の最大は90°=π/2のとき1,最小は270°=(3/2)πのとき−1ですね。
今回の問題の式では、角度の部分がx−π/4

ということは今回の問題では、最大になるのは、x−π/4=π/2すなわちx=(3/4)πです。
このときサインの値は1ですが、√2がかけてあるので、

x=(3/4)πのとき最大値√2

です。
同様に最小値も考えてみると、

x−π/4=(3/2)πすなわちx=(7/4)πのときに最小になるはずですね。つまり、

x=(7/4)πのとき最小値−√2


◆関連項目
y=sinx−3cosxの最大最小
三角関数の合成
三角関数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2022年共通テスト数学1A第2問[1]

本日配信のメルマガでは、2022年大学入学共通テスト数学1A第2問[1]を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2022年共通テスト数1Aより

第2問

[1] p,qを実数とする。
 花子さんと太郎さんは、次の二つの2次方程式について考えている。

  x^2+px+q=0 ……{1}
  x^2+qx+p=0 ……{2}

{1}または{2}を満たす実数xの個数をnとおく。

(1) p=4,q=−4のとき、n=[ア]である。
  また、p=1,q=−2のときn=[イ]である。

(2) p=−6のとき、n=3になる場合を考える。

┌―――――――――――――――――――――――――――――――┐
|花子:例えば、{1}と{2}をともに満たす実数xがあるときはn=3に|
|   なりそうだね。                     |
|太郎:それをαとしたら、α^2−6α+q=0とα^2+qα−6=0|
|   が成り立つよ。                     |
|花子:なるほど。それならば、α^2を消去すれば、αの値が求められ|
|   そうだね。                       |
|太郎:確かにαの値が求まるけど、実際にn=3となっているかどう|
|   かの確認が必要だね。                  |
|花子:これ以外にもn=3となる場合がありそうだね。      |
└―――――――――――――――――――――――――――――――┘

n=3となるqの値は

  q=[ウ],[エ]

である。ただし、[ウ]<[エ]とする。


(3) 花子さんと太郎さんは、グラフ表示ソフトを用いて、{1},{2}の左辺をyと
おいた2次関数y=x^2+px+qとy=x^2+qx+pのグラフの動きを考えて
いる。

p=−6に固定したまま、qの値だけを変化させる。

  y=x^2−6x+q ……{3}
  y=x^2+qx−6 ……{4}

の二つのグラフについて、q=1のときのグラフを点線で、qの値を1から増加
させたときのグラフを実線でそれぞれ表す。このとき、{3}のグラフの移動の様子を
示すと[オ]となり、{4}のグラフの移動の様子を示すと[カ]となる。

[オ],[カ]については、最も適当なものを、次の{0}〜{7}のうちから一つずつ選べ。
ただし、同じ物を繰り返し選んでもよい。なお、x軸とy軸は省略しているが、
x軸は右方向、y軸は上方向がそれぞれ正の方向である。

グラフはこちら→http://www.a-ema.com/img/2022math1a21a.png


(4) [ウ]<q<[エ]とする。全体集合Uを実数全体の集合とし、Uの部分集合
A,Bを

  A={x|x^2−6x+q<0}
  B={x|x^2+qx−6<0}
                     _
とする。Uの部分集合Xに対し、Xの補集合をXと表す。このとき次のことが
成り立つ。

 ・x∈Aは、x∈Bであるための[キ]。
         _
 ・x∈Bは、x∈Aであるための[ク]。

[キ],[ク]の解答群(同じものを繰り返し選んでもよい。)
┌――――――――――――――――――――――――――┐
|{0} 必要条件であるが、十分条件ではない       |
|{1} 十分条件であるが、必要条件ではない       |
|{2} 必要十分条件である               |
|{3} 必要条件でも十分条件でもない          |
└――――――――――――――――――――――――――┘


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★    茨城県水戸市、常陸太田市の個別指導教室          ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、複数人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 第2問[1]は2次方程式、2次関数、必要条件・十分条件
 ◆2 解の個数なら判別式

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ 共通テスト・センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説


 ◆1 第2問[1]は2次方程式、2次関数、必要条件・十分条件

2022年共通テスト数学1A第2問[1]は、2次方程式、2次関数、必要・十分条件の
問題でした。
対話文も含む問題になっていますが、着実に読み取って解いていきましょう!

まず

  x^2+px+q=0 ……{1}
  x^2+qx+p=0 ……{2}

これらの2つの2次方程式があり、これらを満たす実数xの個数をnとしています。

解の個数についての問題なので、判別式を使うのがノーマルですが、それだけで
なく、実際に解がいくつになるかも考えた方が良い場合もあります。

高校数学の2次関数については、ブログでいろいろな論点について解説しています。
http://a-ema.seesaa.net/article/478441371.html
このメルマガとあわせて御覧ください。


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆2 解の個数なら判別式

では(1)です。
pとqの値が与えられて、そのときのnの値を求めます。

まず「p=4,q=−4のとき」は、

x^2+4x−4=0 ……{1}
x^2−4x+4=0 ……{2}

です。
それぞれの判別式D=b^2−4acの値を求めます。

D1=4^2−4×1×(−4)=16+16=32>0
D2=(−4)^2−4×1×4=16−16=0

つまり・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

中学歴史「世界恐慌と日本の中国侵略」記述問題

中学歴史「世界恐慌と日本の中国侵略」記述問題


◆問題

@
世界恐慌に対してイギリスなどがとったブロック経済とはどのような政策か、「植民地」「貿易」「関税」の語句を使って説明せよ。

A
ソ連は世界恐慌の影響をあまり受けなかった。その理由を簡単に説明せよ。

B
国際連盟は、1933年に開かれた総会で、日本に対してどのような決議を行ったか?2つ答えよ。

C
1938年に公布された国家総動員法とはどのようなことを定めた法律か?



高校入試レベルの記述問題では、文字数の指定がなくても、1行〜2行(20字〜40字程度)で記述すると良いと思います。


解答はお知らせの下へ!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=================== お知らせ ======================

★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 オンラインでも複数人同時指導対応しています。
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


◆解答例

@
世界恐慌に対してイギリスなどがとったブロック経済とはどのような政策か、「植民地」「貿易」「関税」の語句を使って説明せよ。
→植民地との貿易を拡大し、他の国の商品に高い関税をかける政策。

A
ソ連は世界恐慌の影響をあまり受けなかった。その理由を簡単に説明せよ。
→社会主義国で、世界恐慌が起こる前から五カ年計画を実施していたから。

B
国際連盟は、1933年に開かれた総会で、日本に対してどのような決議を行ったか?2つ答えよ。
→満州国を認めない。日本軍の撤兵を求める。

C
1938年に公布された国家総動員法とはどのようなことを定めた法律か?
→議会の承認なしに政府が資源や労働力を動員することができることを定めた法律。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 12:00| Comment(0) | TrackBack(0) | 中学社会 | このブログの読者になる | 更新情報をチェックする

2024年08月26日

本日配信のメルマガ。2024年共通テスト英語第3問A 完成

本日配信のメルマガでは、2024年大学入学共通テスト追試英語第3問Aの内容を掲載します。


【高校英語】共通テストの英文解釈
http://www.mag2.com/m/0001641009.html


■ 問題

2024年大学入学共通テスト追試より

第3問

A You are staying by yourself in Sydney, Australia, and thinking of
eating out. You are searching for tips and find a blog.

  [Solo Dining]

As someone who frequently travels abroad alone, one thing I enjoy is dinner
in an elegant restaurant, but sometimes I feel uncomfortable. In many
English-speaking countries, eating out by yourself, "solo dining," is not
common. So, what do you do if it's just you? Finding a "table for one" to
enjoy dinner can be a big task.

Interestingly, on a recent trip alone to Australia I discovered that solo
diners are increasing. I ate dinner at The Weir, a riverside restaurant in
Adelaide. Before I went in, I could see diners eating alone on the terrace,
while checking their phones. When I entered, in the lounge there were only
couples and groups of guests. I was warmly welcomed, taken to the terrace,
and enjoyed a delicious meal.

My experience in Adelaide was a turning point in my feelings towards solo
dining. Later, I learnt that the rise of the smartphone and social media
has led to changes in attitudes towards it for both restaurants and guests.
On my next trip to Paris, I will try solo dining at one of the restaurants
I have long wanted to go to.


問1 Before the trip to Australia, the author of the blog [ 16 ].
{1} had mixed feelings about solo dining and worried about finding a table
just for himself
{2} had never experienced solo dining because he had always had someone to
dine with
{3} was negative about solo dining because his requests for a table to dine
alone had been rejected
{4} was positive about solo dining thanks to a good experience at his
favourite restaurant in Paris

問2 Choices {1} to {6} show the state of each table. Which one best
illustrates the situation when the author entered the restaurant? [ 17 ]


※図は省略します。


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★     茨城県水戸市、常陸太田市の個別指導教室         ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ スラッシュリーディング

A You are staying / by yourself / in Sydney, Australia,
/ and thinking / of eating out.
あなたは滞在している / 一人で / オーストラリアのシドニーに
/ そして考えている / 外食することを

You are searching / for tips / and find a blog.
あなたは探している / コツを / そしてあるブログを見つける


  [Solo Dining][一人で食事をすること]

As / someone who frequently travels abroad / alone, / one thing / I enjoy
/ is dinner / in an elegant restaurant,


(以下略)


(有料版では、解説の続きも掲載しています)
 http://www.mag2.com/m/0001641009.html

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

解説の続きは、本日21時配信予定の

【高校英語】共通テストの英文解釈
 http://www.mag2.com/m/0001641009.html

に掲載します!
全て長文問題になった大学入学共通テスト。今まで以上に読解力が求められます。
翻訳も行っている著者が、スラッシュリーディング、全文訳とともに解説します。
月・水・土配信。\550/月。初月無料です。

※追試はスラッシュリーディングのみの掲載とします。


ブログにもメルマガの記事を分割して掲載しています。

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
------------------------------------------------------------------------
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。

=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:英語
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

中学英語「過去分詞」「学生によって作られた地図」

中学英語「過去分詞」「学生によって作られた地図」

EEvideoの学校向けコンテンツを使って中学3年生に英語の指導をしています。
その中で登場した問題から1問ピックアップして解説します。


◆問題

「市は学生によって作られた非難マップを配りました。」という意味の英文になるよう、空欄に適語を入れてください。

The city [ ] out an evacuation map [ ] by students.


解答解説はお知らせの下へ!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=================== お知らせ ======================

★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 オンラインでも複数人同時指導対応しています。
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆解答解説

動詞を使って「〜された」などの意味の修飾語を表したいときに、過去分詞形を使うことができます。
2語以上になる場合は名詞を後ろから修飾し、この修飾の仕方を「後置修飾」と呼ぶこともあります。

「地図を作る」の「作る」は「make」で、「学生によって作られた」だから過去分詞形にして「made by students」とします。

「配る」はhandを動詞にして「hand out」と表すことができます。
さらに、「配りました」と言っているので過去形にします。

というわけで、

The city handed out an evacuation map made by students.

これで完成です!


その他質問などあれば、何でもどうぞ


------------------------------------------------------------------------

江間淳著

「めんどくさいと寝ちゃう人のためのやりなおし中学英文法問題集」
 https://amzn.to/3gPVr99

もご利用ください。
新課程で中学英語に導入された、現在完了進行形や仮定法のページもあります。
塾の生徒にも使ってもらっていますが、好評です!皆さんもこの本で一緒に
中学英語をマスターしましょう!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
------------------------------------------------------------------------
    発行者:AE個別学習室代表/プロ家庭教師/翻訳者の江間淳
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
 youtube EMA Atsushiチャンネル:https://www.youtube.com/@emajuku
------------------------------------------------------------------------
ラベル:英語
posted by えま at 12:00| Comment(0) | TrackBack(0) | 中学英語 | このブログの読者になる | 更新情報をチェックする

中学歴史「大正デモクラシーと大衆文化」記述問題

中学歴史「大正デモクラシーと大衆文化」記述問題


◆問題

@
米騒動とはどのような出来事か簡単に説明せよ。ただし「米、値段、安売り」の語句を使うこと。

A
米騒動がおこった理由について、「シベリア出兵」「米価」を使って説明せよ。

B
第一次護憲運動によって退陣した桂太郎内閣のあと、立憲政友会総裁の原敬が内閣を組織した。原敬内閣はどのような特徴を持つ内閣か、桂太郎内閣との比較にも触れて説明せよ。

C
1928年の国会議員選挙では、それ以前の選挙に比べて、有権者数が約4倍に増加した。この1928年の選挙の有権者の条件を述べよ。



高校入試レベルの記述問題では、文字数の指定がなくても、1行〜2行(20字〜40字程度)で記述すると良いと思います。


解答はお知らせの下へ!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=================== お知らせ ======================

★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 オンラインでも複数人同時指導対応しています。
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


◆解答例

@
米の値段が急上昇し、人々が米の安売りを求めて、各地で米屋などが襲われたできごと。

A
シベリア出兵を見越した米の買い占めにより、米価が急上昇したから。

B
桂太郎内閣では軍人や官僚が大臣を務めていたが、原敬内閣では多くの大臣が政党に所属する文民だった。

C
満25歳以上の男子。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 08:00| Comment(0) | TrackBack(0) | 中学社会 | このブログの読者になる | 更新情報をチェックする

2024年08月25日

高校数学「三角関数」三角関数の合成A

高校数学「三角関数」三角関数の合成A

■問題

次の式を、rsin(θ+α)の形に表せ。ただし、r>0,−π<α<πとする。

(2) −sinθ+cosθ


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!



■解答解説

三角関数の合成をやります。

asinθ+bcosθの形とみなせば、a=−1,b=1だから、

r=√(1+1)=√2

そして、横がa,縦がb,斜辺がrの直角三角形を考えると、この場合は1:1:√2の直角三角形です。
左に−1,上に1だからα=135°となります。
つまり、α=(3/4)π

というわけで、求める式は、

−sinθ+cosθ=√2sin{θ+(3/4)π}


◆関連項目
cos(x+π/6)=1/2
三角関数の合成
三角関数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

中学歴史「第一次世界大戦とアジア」記述問題

中学歴史「第一次世界大戦とアジア」記述問題


◆問題

@
バルカン半島が「ヨーロッパの火薬庫」と呼ばれた理由を簡単に書け。ただし「民族、宗教、列強、紛争」の語句を使うこと。

A
第一次世界大戦で日本が連合国側として参戦した理由を述べよ。

B
日本の財政支出にしめる軍事費の割合は、1922年〜31年の間は比較的低くなっている。1921年〜22年のワシントン会議に関連づけて、簡単に説明せよ。

C
三・一独立運動とはどのような運動か簡単に説明せよ。ただし「朝鮮、日本、独立」の語句を使うこと。



高校入試レベルの記述問題では、文字数の指定がなくても、1行〜2行(20字〜40字程度)で記述すると良いと思います。


解答はお知らせの下へ!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=================== お知らせ ======================

★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 オンラインでも複数人同時指導対応しています。
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


◆解答例

@
バルカン半島では、民族や宗教の対立に加え、列強の利害もからんで紛争が絶えなかったから。

A
日英同盟を結んでいたから。

B
ワシントン会議で海軍の軍備を制限することが取り決められたから。

C
日本統治下の朝鮮の人々が、日本からの独立を求めた運動。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 17:00| Comment(0) | TrackBack(0) | 中学社会 | このブログの読者になる | 更新情報をチェックする

高校数学「三角関数」三角関数の合成@

高校数学「三角関数」三角関数の合成@

■問題

次の式を、rsin(θ+α)の形に表せ。ただし、r>0,−π<α<πとする。

(1) sinθ+√3・cosθ


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!



■解答解説

三角関数の合成をやります。

asinθ+bcosθの形とみなせば、a=1,b=√3だから、

r=√(12+√32)=√(1+3)=√4=2

そして、横がa,縦がb,斜辺がrの直角三角形を考えると、この場合は1:2:√3の直角三角形だから、α=60°です。
つまり、α=π/3

というわけで、求める式は、

sinθ+√3・cosθ=2sin(θ+π/3)


◆関連項目
cos(x+π/6)=1/2
三角関数の合成
三角関数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 08:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

2024年08月24日

高校数学「三角関数」三角方程式sinx+√3・cosx=√2

高校数学「三角関数」三角方程式sinx+√3・cosx=√2

■問題

三角方程式sinx+√3・cosx=√2を解け。ただし、0≦x<2πとする。


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!



■解答解説

サインとコサイン両方があるときは、どちらか片方に統一します。
そして、サインもコサインも1次の式の場合は、いわゆる「三角関数の合成」を行います。
合成をすれば、サインだけの1次式にすることができて、比較的簡単に方程式を解くことができます。

三角関数の合成について詳しくは、こちらをご覧ください

 sinx+√3・cosx
=√(12+√32)sin(x+π/3)
=2sin(x+π/3)

このように合成できるので、左辺をコレに置き換えると、

2sin(x+π/3)=√2
 sin(x+π/3)=√2/2

よって、x+π/3=π/4,(3/4)π

xについて解くと、x=−π/12,(5/12)π

−π/12は範囲外になってしまうので、0≦x<2πの範囲内で同じ位置の角度を考えると、求める解は、

x=(5/12)π,(23/12)π


◆関連項目
cos(x+π/6)=1/2
三角関数の合成
三角関数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2024年共通テスト追試英語第3問A 本文最後までの内容

本日配信のメルマガでは、2024年大学入学共通テスト追試英語第3問Aの本文最後までの内容を掲載します。


【高校英語】共通テストの英文解釈
http://www.mag2.com/m/0001641009.html


■ 問題

2024年大学入学共通テスト追試より

第3問

A You are staying by yourself in Sydney, Australia, and thinking of
eating out. You are searching for tips and find a blog.

  [Solo Dining]

As someone who frequently travels abroad alone, one thing I enjoy is dinner
in an elegant restaurant, but sometimes I feel uncomfortable. In many
English-speaking countries, eating out by yourself, "solo dining," is not
common. So, what do you do if it's just you? Finding a "table for one" to
enjoy dinner can be a big task.

Interestingly, on a recent trip alone to Australia I discovered that solo
diners are increasing. I ate dinner at The Weir, a riverside restaurant in
Adelaide. Before I went in, I could see diners eating alone on the terrace,
while checking their phones. When I entered, in the lounge there were only
couples and groups of guests. I was warmly welcomed, taken to the terrace,
and enjoyed a delicious meal.

My experience in Adelaide was a turning point in my feelings towards solo
dining. Later, I learnt that the rise of the smartphone and social media
has led to changes in attitudes towards it for both restaurants and guests.
On my next trip to Paris, I will try solo dining at one of the restaurants
I have long wanted to go to.


つづく


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★     茨城県水戸市、常陸太田市の個別指導教室         ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ スラッシュリーディング

A You are staying / by yourself / in Sydney, Australia,
/ and thinking / of eating out.
あなたは滞在している / 一人で / オーストラリアのシドニーに
/ そして考えている / 外食することを

You are searching / for tips / and find a blog.
あなたは探している / コツを / そしてあるブログを見つける


  [Solo Dining][一人で食事をすること]

As / someone who frequently travels abroad / alone, / one thing / I enjoy
/ is dinner / in an elegant restaurant,


(以下略)


(有料版では、解説の続きも掲載しています)
 http://www.mag2.com/m/0001641009.html

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

解説の続きは、本日21時配信予定の

【高校英語】共通テストの英文解釈
 http://www.mag2.com/m/0001641009.html

に掲載します!
全て長文問題になった大学入学共通テスト。今まで以上に読解力が求められます。
翻訳も行っている著者が、スラッシュリーディング、全文訳とともに解説します。
月・水・土配信。\550/月。初月無料です。

※追試はスラッシュリーディングのみの掲載とします。


ブログにもメルマガの記事を分割して掲載しています。

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
------------------------------------------------------------------------
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。

=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:英語
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN