高校化学「有機物」アルカンの式と燃焼@
■問題
アルカンについて、次の問いに答えよ。
(1) アルカン1分子中の炭素原子数をnとして、その分子式を示せ。
↓解答解説はお知らせの下↓
====================== お知らせ ========================
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる、3人までの同時指導も好評です!
オンラインでも複数人同時指導対応しています。
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
興味をお持ちの方は、まずは こちらまでお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■解答解説
アルカンは鎖式飽和炭化水素です。
Cに最大限Hがついたもの。と考えられます。
例えば炭素数3のアルカンの構造式は、
H H H
| | |
H−C−C−C−H
| | |
H H H
このようになります。
炭素3個に対してHが8個くっついていますね。
炭素がもう一つ増えれば、炭素4個に対してHは10個。
さらに増えれば炭素5個に対してHは12個・・・
このように増えると推定できますね。
これをnを用いた分子式で表すと、
CnH2n+2
となります。
次の問題→完全燃焼した場合
◆関連項目
アルカン
脂肪族炭化水素
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2024年08月02日
本日配信のメルマガ。2023年共通テスト数学1A第5問
本日配信のメルマガでは、2023年大学入学共通テスト数学1A第5問を解説します。
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2023年共通テスト数1Aより
第5問
(1) 円Oに対して、次の[手順1]で作図を行う。
┌―[手順1]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。|
| 円Oと直線lとの交点をA,Bとし、線分ABの中点Cをとる。|
|(Step 2) 円Oの周上に、点Dを∠CODが鈍角となるようにとる。 |
| 直線CDを引き、円Oとの交点でDとは異なる点をEとする。 |
|(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点を|
| Fとし、円Oとの交点でDとは異なる点をGとする。 |
|(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。|
└―――――――――――――――――――――――――――――――――┘
参考図→http://www.a-ema.com/img/center2023math1a5.png
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。
このことは、次の[構想]に基づいて、後のように説明できる。
┌―[構想]―――――――――――――――――――――――――――――┐
| 直線EHが円Oの接線であることを証明するためには、 |
|∠OEH=[アイ]°であることを示せば良い。 |
└―――――――――――――――――――――――――――――――――┘
[手順1]の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上に
あることがわかる。よって、∠CHG=[エ]である。一方、点Eは円Oの周上に
あることことから、[エ]=[オ]がわかる。よって、∠CHG=[オ]であるので、
4点C,G,H,[カ]は同一円周上にある。この円が点[ウ]を通ることにより、
∠OEH=[アイ]°を示すことができる。
[ウ]の解答群
┌―――――――――――――――――――――――┐
|{0} B {1} D {2} F {3} O |
└―――――――――――――――――――――――┘
[エ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠AFC {1} ∠CDF {2} ∠CGH {3} ∠CBO {4} ∠FOG|
└――――――――――――――――――――――――――――――――――┘
[オ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠AED {1} ∠ADE {2} ∠BOE {3} ∠DEG {4} ∠EOH|
└――――――――――――――――――――――――――――――――――┘
[カ]の解答群
┌―――――――――――――――――――――――┐
|{0} A {1} D {2} E {3} F |
└―――――――――――――――――――――――┘
(2) 円Oに対して、(1)の[手順1]とは直線lの引き方を変え、次の[手順2]で
作図を行う。
┌―[手順2]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに |
| 垂直な直線を引き、直線lとの交点をPとする。 |
|(Step 2) 円Oの周上に、点Qを∠POQが鈍角となるようにとる。直線|
| PQを引き、円Oとの交点でQとは異なる点をRとする。 |
|(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQ |
| とは異なる点をSとする。 |
|(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。|
└―――――――――――――――――――――――――――――――――┘
このとき、∠PTS=[キ]である。
円Oの半径が√5で、OT=3√6であったとすると、3点O,P,Rを通る
円の半径は([ク]√[ケ])/[コ]であり、RT=[サ]である。
[キ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠PQS {1} ∠PST {2} ∠QPS {3} ∠QRS {4} ∠SRT|
└――――――――――――――――――――――――――――――――――┘
※分数は(分子)/(分母)、xの2乗はx^2で、マーク部分の□は[ ]、マル1は{1}
で表記しています。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる、複数人の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 数学1A第4問は「整数の性質」
◆2 「両方を割り切る」=「公約数」
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ 共通テスト・センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ 共通テスト・センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1 平面図形の性質は、中学の内容も重要!
2023年共通テストも数学1A第5問は平面図形の性質が出題されました。
センター試験では、この問題では、主にメネラウスの定理や方べきの定理を使う
問題が出題されていましたが、共通テストでは、性質自体は中学レベルで、設定が
ややこしい問題が出題される傾向になってきたようです。
・相似な図形
・円と接線
・円に内接する四角形
・三角形の重心、内心、外心
・二等辺三角形、正三角形
・平行線の性質
特にこれらの性質や定理が使われ割合が増えたと思います。
皆さんは、これらの用語を見て、「アレだな!」と思い出すことができましたか?
もし怪しい場合は、教科書や参考書などを見て、再確認しておくことをおすすめ
します!
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
◆2 接線と半径は垂直に交わる
では今回の問題です。
(1) 円Oに対して、次の[手順1]で作図を行う。
┌―[手順1]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。|
| 円Oと直線lとの交点をA,Bとし、線分ABの中点Cをとる。|
|(Step 2) 円Oの周上に、点Dを∠CODが鈍角となるようにとる。 |
| 直線CDを引き、円Oとの交点でDとは異なる点をEとする。 |
|(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点を|
| Fとし、円Oとの交点でDとは異なる点をGとする。 |
|(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。|
└―――――――――――――――――――――――――――――――――┘
参考図→http://www.a-ema.com/img/center2023math1a5.png
このように図を描くと、「直線lと点Dの位置によらず、直線EHは円Oの接線」
になります。
まずは、接線の性質を利用して、このことを証明していきます。
円と接線の性質のひとつに、「接線と接点に引いた半径は垂直に交わる」という
ものがあります。
つまり・・・
つづく
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html
【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html
【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html
★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html
★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html
【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html
【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2023年共通テスト数1Aより
第5問
(1) 円Oに対して、次の[手順1]で作図を行う。
┌―[手順1]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。|
| 円Oと直線lとの交点をA,Bとし、線分ABの中点Cをとる。|
|(Step 2) 円Oの周上に、点Dを∠CODが鈍角となるようにとる。 |
| 直線CDを引き、円Oとの交点でDとは異なる点をEとする。 |
|(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点を|
| Fとし、円Oとの交点でDとは異なる点をGとする。 |
|(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。|
└―――――――――――――――――――――――――――――――――┘
参考図→http://www.a-ema.com/img/center2023math1a5.png
このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。
このことは、次の[構想]に基づいて、後のように説明できる。
┌―[構想]―――――――――――――――――――――――――――――┐
| 直線EHが円Oの接線であることを証明するためには、 |
|∠OEH=[アイ]°であることを示せば良い。 |
└―――――――――――――――――――――――――――――――――┘
[手順1]の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上に
あることがわかる。よって、∠CHG=[エ]である。一方、点Eは円Oの周上に
あることことから、[エ]=[オ]がわかる。よって、∠CHG=[オ]であるので、
4点C,G,H,[カ]は同一円周上にある。この円が点[ウ]を通ることにより、
∠OEH=[アイ]°を示すことができる。
[ウ]の解答群
┌―――――――――――――――――――――――┐
|{0} B {1} D {2} F {3} O |
└―――――――――――――――――――――――┘
[エ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠AFC {1} ∠CDF {2} ∠CGH {3} ∠CBO {4} ∠FOG|
└――――――――――――――――――――――――――――――――――┘
[オ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠AED {1} ∠ADE {2} ∠BOE {3} ∠DEG {4} ∠EOH|
└――――――――――――――――――――――――――――――――――┘
[カ]の解答群
┌―――――――――――――――――――――――┐
|{0} A {1} D {2} E {3} F |
└―――――――――――――――――――――――┘
(2) 円Oに対して、(1)の[手順1]とは直線lの引き方を変え、次の[手順2]で
作図を行う。
┌―[手順2]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに |
| 垂直な直線を引き、直線lとの交点をPとする。 |
|(Step 2) 円Oの周上に、点Qを∠POQが鈍角となるようにとる。直線|
| PQを引き、円Oとの交点でQとは異なる点をRとする。 |
|(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQ |
| とは異なる点をSとする。 |
|(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。|
└―――――――――――――――――――――――――――――――――┘
このとき、∠PTS=[キ]である。
円Oの半径が√5で、OT=3√6であったとすると、3点O,P,Rを通る
円の半径は([ク]√[ケ])/[コ]であり、RT=[サ]である。
[キ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠PQS {1} ∠PST {2} ∠QPS {3} ∠QRS {4} ∠SRT|
└――――――――――――――――――――――――――――――――――┘
※分数は(分子)/(分母)、xの2乗はx^2で、マーク部分の□は[ ]、マル1は{1}
で表記しています。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる、複数人の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 数学1A第4問は「整数の性質」
◆2 「両方を割り切る」=「公約数」
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ 共通テスト・センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ 共通テスト・センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1 平面図形の性質は、中学の内容も重要!
2023年共通テストも数学1A第5問は平面図形の性質が出題されました。
センター試験では、この問題では、主にメネラウスの定理や方べきの定理を使う
問題が出題されていましたが、共通テストでは、性質自体は中学レベルで、設定が
ややこしい問題が出題される傾向になってきたようです。
・相似な図形
・円と接線
・円に内接する四角形
・三角形の重心、内心、外心
・二等辺三角形、正三角形
・平行線の性質
特にこれらの性質や定理が使われ割合が増えたと思います。
皆さんは、これらの用語を見て、「アレだな!」と思い出すことができましたか?
もし怪しい場合は、教科書や参考書などを見て、再確認しておくことをおすすめ
します!
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
◆2 接線と半径は垂直に交わる
では今回の問題です。
(1) 円Oに対して、次の[手順1]で作図を行う。
┌―[手順1]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。|
| 円Oと直線lとの交点をA,Bとし、線分ABの中点Cをとる。|
|(Step 2) 円Oの周上に、点Dを∠CODが鈍角となるようにとる。 |
| 直線CDを引き、円Oとの交点でDとは異なる点をEとする。 |
|(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点を|
| Fとし、円Oとの交点でDとは異なる点をGとする。 |
|(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。|
└―――――――――――――――――――――――――――――――――┘
参考図→http://www.a-ema.com/img/center2023math1a5.png
このように図を描くと、「直線lと点Dの位置によらず、直線EHは円Oの接線」
になります。
まずは、接線の性質を利用して、このことを証明していきます。
円と接線の性質のひとつに、「接線と接点に引いた半径は垂直に交わる」という
ものがあります。
つまり・・・
つづく
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html
【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html
【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html
★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html
★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html
【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html
【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html
ラベル:数学
高校情報「2進法」2進法の計算@
高校情報「2進法」2進法の計算@
◆問題
次の10進法の数を2進法で表しなさい。
@18
A38
B160
↓解答はお知らせの下に↓
評価が高い情報のテキストはコレ!
学校で習っていなくても読んで理解できる 藤原進之介の ゼロから始める情報I
━━━━━━━━━━━━━お知らせ━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる2人以上の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
お問い合わせはこちらへどうぞ
家庭教師・塾のサイト→ http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
◆解答
数学の記事で解説したものと方法は同じです。
2で割っていって余りを考えます。
@18
2)18
―――
2) 9・・・0
―――
2) 4・・・1
―――
2) 2・・・0
―――
1・・・0
下から数字を読んでいくので、2進法に直した数は「10010(2)」です。
A38
2)38
―――
2)19・・・0
―――
2) 9・・・1
―――
2) 4・・・1
―――
2) 2・・・0
―――
1・・・0
よって、38を2進数にすると「100110(2)」です。
B160
2)160
――――
2) 80・・・0
――――
2) 40・・・0
――――
2) 20・・・0
――――
2) 10・・・0
――――
2) 5・・・0
――――
2) 2・・・1
――――
1・・・0
つまり、160を2進数にすると「10100000(2)」です。
前の問題→著作権と個人情報C
次の問題→2進法A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
◆問題
次の10進法の数を2進法で表しなさい。
@18
A38
B160
↓解答はお知らせの下に↓
評価が高い情報のテキストはコレ!
学校で習っていなくても読んで理解できる 藤原進之介の ゼロから始める情報I
━━━━━━━━━━━━━お知らせ━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる2人以上の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
お問い合わせはこちらへどうぞ
家庭教師・塾のサイト→ http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
◆解答
数学の記事で解説したものと方法は同じです。
2で割っていって余りを考えます。
@18
2)18
―――
2) 9・・・0
―――
2) 4・・・1
―――
2) 2・・・0
―――
1・・・0
下から数字を読んでいくので、2進法に直した数は「10010(2)」です。
A38
2)38
―――
2)19・・・0
―――
2) 9・・・1
―――
2) 4・・・1
―――
2) 2・・・0
―――
1・・・0
よって、38を2進数にすると「100110(2)」です。
B160
2)160
――――
2) 80・・・0
――――
2) 40・・・0
――――
2) 20・・・0
――――
2) 10・・・0
――――
2) 5・・・0
――――
2) 2・・・1
――――
1・・・0
つまり、160を2進数にすると「10100000(2)」です。
前の問題→著作権と個人情報C
次の問題→2進法A
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
こんなヤツです
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN