2024年08月27日

高校数学「三角関数」y=sinx−cosxの最大最小

高校数学「三角関数」y=sinx−cosxの最大最小

■問題

y=sinx−cosxの最大値・最小値を求めよ。ただし、0≦x<2πとする。


↓三角方程式などの三角関数の問題の解き方がマスターできるテキストです↓

10秒でわかる高校数学2B「三角関数」の考え方

「久しぶりの三角関数、分かりやすく直感で問題の解く方向が分かり楽しかった」などのコメントいただいています。ありがとうございます!



■解答解説

今回の式のように、サインもコサインも1次式の場合は三角関数の合成をやります。

asinθ+bcosθの形とみなせば、a=1,b=−1だから、

r=√{12+(−1)2}=√2

そして、横がa,縦がb,斜辺がrの直角三角形を考えると、この場合は1:1:√2の直角三角形です。
右に1,下に1だからα=−45°となります。つまり、α=−π/4

というわけで、与式は

y=√2・sin(x−π/4)

と書き換えることができます。
あとはこれの最大値・最小値を考えます。

サインの値自体の最大は90°=π/2のとき1,最小は270°=(3/2)πのとき−1ですね。
今回の問題の式では、角度の部分がx−π/4

ということは今回の問題では、最大になるのは、x−π/4=π/2すなわちx=(3/4)πです。
このときサインの値は1ですが、√2がかけてあるので、

x=(3/4)πのとき最大値√2

です。
同様に最小値も考えてみると、

x−π/4=(3/2)πすなわちx=(7/4)πのときに最小になるはずですね。つまり、

x=(7/4)πのとき最小値−√2


◆関連項目
y=sinx−3cosxの最大最小
三角関数の合成
三角関数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする

本日配信のメルマガ。2022年共通テスト数学1A第2問[1]

本日配信のメルマガでは、2022年大学入学共通テスト数学1A第2問[1]を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2022年共通テスト数1Aより

第2問

[1] p,qを実数とする。
 花子さんと太郎さんは、次の二つの2次方程式について考えている。

  x^2+px+q=0 ……{1}
  x^2+qx+p=0 ……{2}

{1}または{2}を満たす実数xの個数をnとおく。

(1) p=4,q=−4のとき、n=[ア]である。
  また、p=1,q=−2のときn=[イ]である。

(2) p=−6のとき、n=3になる場合を考える。

┌―――――――――――――――――――――――――――――――┐
|花子:例えば、{1}と{2}をともに満たす実数xがあるときはn=3に|
|   なりそうだね。                     |
|太郎:それをαとしたら、α^2−6α+q=0とα^2+qα−6=0|
|   が成り立つよ。                     |
|花子:なるほど。それならば、α^2を消去すれば、αの値が求められ|
|   そうだね。                       |
|太郎:確かにαの値が求まるけど、実際にn=3となっているかどう|
|   かの確認が必要だね。                  |
|花子:これ以外にもn=3となる場合がありそうだね。      |
└―――――――――――――――――――――――――――――――┘

n=3となるqの値は

  q=[ウ],[エ]

である。ただし、[ウ]<[エ]とする。


(3) 花子さんと太郎さんは、グラフ表示ソフトを用いて、{1},{2}の左辺をyと
おいた2次関数y=x^2+px+qとy=x^2+qx+pのグラフの動きを考えて
いる。

p=−6に固定したまま、qの値だけを変化させる。

  y=x^2−6x+q ……{3}
  y=x^2+qx−6 ……{4}

の二つのグラフについて、q=1のときのグラフを点線で、qの値を1から増加
させたときのグラフを実線でそれぞれ表す。このとき、{3}のグラフの移動の様子を
示すと[オ]となり、{4}のグラフの移動の様子を示すと[カ]となる。

[オ],[カ]については、最も適当なものを、次の{0}〜{7}のうちから一つずつ選べ。
ただし、同じ物を繰り返し選んでもよい。なお、x軸とy軸は省略しているが、
x軸は右方向、y軸は上方向がそれぞれ正の方向である。

グラフはこちら→http://www.a-ema.com/img/2022math1a21a.png


(4) [ウ]<q<[エ]とする。全体集合Uを実数全体の集合とし、Uの部分集合
A,Bを

  A={x|x^2−6x+q<0}
  B={x|x^2+qx−6<0}
                     _
とする。Uの部分集合Xに対し、Xの補集合をXと表す。このとき次のことが
成り立つ。

 ・x∈Aは、x∈Bであるための[キ]。
         _
 ・x∈Bは、x∈Aであるための[ク]。

[キ],[ク]の解答群(同じものを繰り返し選んでもよい。)
┌――――――――――――――――――――――――――┐
|{0} 必要条件であるが、十分条件ではない       |
|{1} 十分条件であるが、必要条件ではない       |
|{2} 必要十分条件である               |
|{3} 必要条件でも十分条件でもない          |
└――――――――――――――――――――――――――┘


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★
★                                 ★
★    茨城県水戸市、常陸太田市の個別指導教室          ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。   ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!   ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。    ★
★                                 ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、複数人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 第2問[1]は2次方程式、2次関数、必要条件・十分条件
 ◆2 解の個数なら判別式

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ 共通テスト・センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説


 ◆1 第2問[1]は2次方程式、2次関数、必要条件・十分条件

2022年共通テスト数学1A第2問[1]は、2次方程式、2次関数、必要・十分条件の
問題でした。
対話文も含む問題になっていますが、着実に読み取って解いていきましょう!

まず

  x^2+px+q=0 ……{1}
  x^2+qx+p=0 ……{2}

これらの2つの2次方程式があり、これらを満たす実数xの個数をnとしています。

解の個数についての問題なので、判別式を使うのがノーマルですが、それだけで
なく、実際に解がいくつになるかも考えた方が良い場合もあります。

高校数学の2次関数については、ブログでいろいろな論点について解説しています。
http://a-ema.seesaa.net/article/478441371.html
このメルマガとあわせて御覧ください。


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆2 解の個数なら判別式

では(1)です。
pとqの値が与えられて、そのときのnの値を求めます。

まず「p=4,q=−4のとき」は、

x^2+4x−4=0 ……{1}
x^2−4x+4=0 ……{2}

です。
それぞれの判別式D=b^2−4acの値を求めます。

D1=4^2−4×1×(−4)=16+16=32>0
D2=(−4)^2−4×1×4=16−16=0

つまり・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする

中学歴史「世界恐慌と日本の中国侵略」記述問題

中学歴史「世界恐慌と日本の中国侵略」記述問題


◆問題

@
世界恐慌に対してイギリスなどがとったブロック経済とはどのような政策か、「植民地」「貿易」「関税」の語句を使って説明せよ。

A
ソ連は世界恐慌の影響をあまり受けなかった。その理由を簡単に説明せよ。

B
国際連盟は、1933年に開かれた総会で、日本に対してどのような決議を行ったか?2つ答えよ。

C
1938年に公布された国家総動員法とはどのようなことを定めた法律か?



高校入試レベルの記述問題では、文字数の指定がなくても、1行〜2行(20字〜40字程度)で記述すると良いと思います。


解答はお知らせの下へ!

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=================== お知らせ ======================

★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 オンラインでも複数人同時指導対応しています。
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━


◆解答例

@
世界恐慌に対してイギリスなどがとったブロック経済とはどのような政策か、「植民地」「貿易」「関税」の語句を使って説明せよ。
→植民地との貿易を拡大し、他の国の商品に高い関税をかける政策。

A
ソ連は世界恐慌の影響をあまり受けなかった。その理由を簡単に説明せよ。
→社会主義国で、世界恐慌が起こる前から五カ年計画を実施していたから。

B
国際連盟は、1933年に開かれた総会で、日本に対してどのような決議を行ったか?2つ答えよ。
→満州国を認めない。日本軍の撤兵を求める。

C
1938年に公布された国家総動員法とはどのようなことを定めた法律か?
→議会の承認なしに政府が資源や労働力を動員することができることを定めた法律。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 12:00| Comment(0) | TrackBack(0) | 中学社会 | このブログの読者になる | 更新情報をチェックする
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN