【高校数学】読むだけでわかる!センター数学の考え方
http://www.mag2.com/m/0001641004.html
の冒頭部分を配信していきます。
まずはこのメルマガで雰囲気を掴んでいただければ幸いです。
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2018年センター試験数2Bより
第2問
[ 2 ] 関数f(x)はx≧1の範囲でつねにf(x)≦0を満たすとする。t>1の
とき、曲線y=f(x)とx軸および2直線x=1,x=tで囲まれた図形の面積を
Wとする。tがt>1の範囲を動くとき、Wは、底辺の長さが2t^2−2,他の
2辺の長さがそれぞれt^2+1の二等辺三角形の面積とつねに等しいとする。
このとき、x>1におけるf(x)を求めよう。
F(x)をf(x)の不定積分とする。一般に、F'(x)=[ツ],W=[テ]が成り
立つ。[ツ],[テ]に当てはまるものを、次の{0}〜{8}のうちから一つずつ選べ。
ただし、同じものを選んでもよい。
{0} −F(t) {1} F(t) {2} F(t)−F(1)
{3} F(t)+F(1) {4} −F(t)+F(1) {5} −F(t)−F(1)
{6} −f(x) {7} f(x) {8} f(x)−f(1)
したがって、t>1において
f(t)=[トナ]t^[ニ]+[ヌ]
である。よって、x>1におけるf(x)がわかる。
※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記して
います。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================
茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。
1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
対象は小学生〜高校生・浪人生まで。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。
東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 導関数は傾きを表す
◆2 極値では導関数の値(=微分係数)が0
◆3 積分は微分の逆
◆4 f(x)はどんな関数?
◆5 面積は「上引く下で定積分」
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
センター英語、数学を解説するブログを始めました!
■ センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
2016〜2018年のセンター試験本試験は全問の解説の掲載が完了しました!
毎日更新中です!
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1〜3は省略します。
◆4 f(x)はどんな関数?
では今回の問題です。まずはどんな設定かよく確認しましょう!
[ 2 ] 関数f(x)はx≧1の範囲でつねにf(x)≦0を満たすとする。t>1の
とき、曲線y=f(x)とx軸および2直線x=1,x=tで囲まれた図形の面積を
Wとする。tがt>1の範囲を動くとき、Wは、底辺の長さが2t^2−2,他の
2辺の長さがそれぞれt^2+1の二等辺三角形の面積とつねに等しいとする。
このとき、x>1におけるf(x)を求めよう。
関数f(x)が与えられています。
このf(x)は、「x≧1の範囲でつねにf(x)≦0を満たす」そうです。
さらに、t>1でx=tという直線と、x=1という直線を考えます。
これらのグラフとx軸とで囲まれた図形の面積をWとしています。
つまりこれは・・・
1からtの区間でのf(x)の定積分の値とほとんど同じですね。
さらに、このWは、「底辺の長さが2t^2−2,他の2辺の長さがそれぞれ
t^2+1の二等辺三角形の面積と常に等しい」と定められています。
まとめると、
Wはxの関数で表されていて、そのWはtの式で表される二等辺三角形の面積と
同じになる。というわけです。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
◆5 面積は「上引く下で定積分」
続いて、「F(x)をf(x)の不定積分とする」とあります。
そして、選択肢から当てはまる式(値)を選ぶ問題になっています。
選択肢は
{0} −F(t) {1} F(t) {2} F(t)−F(1)
{3} F(t)+F(1) {4} −F(t)+F(1) {5} −F(t)−F(1)
{6} −f(x) {7} f(x) {8} f(x)−f(1)
です。
F(x)はf(x)を積分したものなので、F(x)を微分すれば・・・
(以下略)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!センター数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。
電子書籍版はこちら →→ http://amzn.to/2oZjEzX
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
ラベル:数学