2019年03月22日

本日配信のメルマガ。2019年センター数学2B第2問[ニ]まで

本日配信のメルマガでは、2019年大学入試センター試験数学2B第2問の[ニ]までを解説します。


このメルマガでは、まぐまぐ!様より月額540円で配信中の

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2019年センター試験数2Bより

第2問

 p,qを実数とし、関数f(x)=x^3+px^2+qxはx=−1で極値2を
とるとする。また、座標平面上の曲線y=f(x)をC,放物線y=−kx^2をD,
放物線D上の点(a,−ka^2)をAとする。ただし、k>0,a>0である。

(1) 関数f(x)がx=−1で極値をとるので、f'(−1)=[ア]である。これと
f(−1)=2より、p=[イ],q=[ウエ]である。よって、f(x)はx=[オ]で
極小値[カキ]をとる。

(2) 点Aにおける放物線Dの接線をlとする。Dとlおよびx軸で囲まれた図形の
面積Sをaとkを用いて表そう。

 lの方程式は

  y=[クケ]kax+ka^[コ] ……{1}

と表せる。lとx軸の交点のx座標は[サ]/[シ]であり、Dとx軸および直線
x=aで囲まれた図形の面積は(k/[ス])a^[セ]である。よって、
S=(k/[ソタ])a^[セ]である。

(3) さらに、点Aが曲線C上にあり、かつ(2)の接線lがCにも接するとする。
このときの(2)のSの値を求めよう。

 AがC上にあるので、k=[チ]/[ツ]−[テ]である。

 lとCの接点のx座標をbとすると、lの方程式はbを用いて

  y=[ト](b^2−[ナ])x−[ニ]b^2 ……{2}

と表される。{2}の右辺をg(x)とおくと

  f(x)−g(x)=(x−[ヌ])^2・(x+[ネ]b)

と因数分解されるので、a=−[ネ]bとなる。{1}と{2}の表す直線の傾きを比較
することにより、a^2=[ノハ]/[ヒ]である。

 したがって、求めるSの値は[フ]/[ヘホ]である。


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記して
います。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 導関数は傾きを表す
 ◆2 極値では導関数の値(=微分係数)が0
 ◆3 積分は微分の逆
 ◆4 極値なのでf'(x)=0
 ◆5 極値はy座標

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

センター英語、数学を解説するブログを始めました!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

2016〜2018年のセンター試験本試験は全問の解説の掲載が完了しました!
毎日更新中です!


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説

◆1〜3は省略します。


 ◆4 極値なのでf'(x)=0

前置きはこの辺にして、今回の問題です。

2019年は、3次関数f(x)=x^3+px^2+qxについての問題でした。

この関数は、「x=−1で極値2をとる」と言っています。

ここからいくつか式ができますね?

まずは、◆2でも触れたように「極値は接線の傾きがゼロになるところ」なので、
f(x)を微分し、x=−1を代入した式の値はゼロになります。

つまり、f'(−1)=0です。

よって、[ア]=0

少し計算しておきましょう!

f'(x)=3x^2+2px+q
f'(−1)=3(−1)^2+2p×(−1)+q
     =3−2p+q=0

このような式が得られます。


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆5 極値はy座標

さらに、「x=−1で極値2をとる」ので、f(−1)=2です。
極値は式の値なので、つまりはxy平面にグラフを描いた場合のy座標ですね。

これもその通りの式を作ってみましょう!

f(x)=x^3+px^2+qx
f(−1)=(−1)^3+p(−1)^2+q(−1)
    =−1+p−q=2

文字が2つあるので、◆4の式と連立すれば・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:微分積分
posted by えま at 11:21| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN