2019年04月23日

高校数学「2次関数の最大最小」「最大値とそのときのx,yの値」

高校数学「2次関数の最大最小」「最大値とそのときのx,yの値」

「x≧0,y≧0,2x+y=2のとき、x(y−1)の最大値・最小値を求めよ。」

この問題を解くことを考えます。

前回の記事で、与式から2次式を作りました。

x(y−1)=−2x^2+x

となるのでしたね。

この記事では、この2次式の最大値・最小値を実際に求めてみます。

2次式の最大最小なので、まずは平方完成です。

 −2x^2+x
=−2(x^2−x/2)
=−2{(x−1/4)^2−1/16}
=−2(x−1/4)^2+1/8

よって、この2次式の頂点は、(1/4,1/8)
だから、「x=1/4のときy=1/8」・・・ではありません。

x=1/4は正しいですが、この1/8は、この問題のyの値ではなく、x(y−1)の式の値です。

−2x^2+xは、xの2乗の係数がマイナスなので、上に凸の放物線になります。
だから、頂点が定義域に入っていれば、頂点が最大値になります。

x≧0,y≧0,2x+y=2という条件から、xの定義域が決まります。
x,yともにゼロ以上で、2x+y=2ということは、xが増えればyは減る。という関係にあり、xもyもある一定の範囲の値のみをとることができます。
y≧0を満たす範囲で、xが最も大きくなるときは、x=1ですね。x=1,y=0ならば、2x+y=2が成り立ちます。
つまり、定義域は0≦x≦1です。

この範囲内にx=1/4は入っているので、やはり頂点が最大値です。
x=1/4のとき、最大値1/8

さらに、このときのyの値も求めましょう!
2x+y=2で、x=1/4なので代入して、2×1/4+y=2より、y=3/2です。
まとめると、

x=1/4,y=3/2のとき、最大値1/8

というわけですね!


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


ラベル:数学
posted by えま at 12:53| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN