2019年05月16日

高校数学「2次関数」「判別式」「2次不等式」

高校数学「2次関数」「判別式」「2次不等式」

x^2+ax+a+3>0が、xの値にかかわらず常に成り立つようなaの値の範囲を求めよ。

この問題について考えます。

単に公式的に解き方を覚えて、当てはめて計算するだけ。というのは良い方法ではありません。
ちゃんとグラフを考えて、その解き方が必然的にそうなる。ことを理解した方が良いです。

「2次不等式がxの値にかかわらず成り立つ」とはどういう場合でしょうか?

「xにどんな値を代入しても、式が成り立つ」ので、「xにどんな値を代入しても、常に式の値がプラス」ですね。

y=x^2+ax+a+3という2次関数を考えれば、「xの値がいくつでも、yの値がプラス」です。

xの2乗の係数がプラスなので、この2次関数は下に凸です。
下に凸の放物線でyの値が常にプラスということは、2次関数のグラフとx軸は共有点を持たない。ことを意味します。

だから、判別式D<0という条件になるのです。
「D<0のとき、放物線とx軸は共有点を持たない」でしたね?

だから、「2次不等式が常に成り立つ」ならば、「D<0」で解けば良いというわけです。


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


ラベル:数学
posted by えま at 08:46| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN