2019年09月24日

本日配信のメルマガ。2018年センター数学1A第2問[1]

本日配信のメルマガでは2018年センター数学1A第2問[1]を解説します。


【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2018年センター試験数1Aより

第2問

[1] 四角形ABCDにおいて、3辺の長さをそれぞれAB=5,BC=9,
CD=3,対角線ACの長さをAC=6とする。このとき

 cos∠ABC=[ア]/[イ],sin∠ABC=[ウ]√[エ]/[オ]

である。

 ここで、四角形ABCDは台形であるとする。
 次の[カ]には下の{0}〜{2}から、[キ]には{3}・{4}から当てはまるものを一つ
ずつ選べ。

 CD[カ]AB・sin∠ABCであるから[キ]である。

{0} <  {1} =  {2} >
{3} 辺ADと辺BCが平行  {4} 辺ABと辺CDが平行

したがって

  BD=[ク]√[ケコ]

である。


※分数は(分子)/(分母)、マル1は{1}、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。
1回の授業では、基本的に英語または数学の1教科を集中的に指導します。
1:1の授業をご希望の方への特別コースもご用意しています。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 素早くやり方を見抜くのが大切
 ◆2 頂点なら平方完成
 ◆3 1行飛ばして2乗

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説

◆1は省略します。


 ◆2 ∠ABCなら△ABCを考える

ではまず最初の設問を確認してみましょう!


[1] 四角形ABCDにおいて、3辺の長さをそれぞれAB=5,BC=9,
CD=3,対角線ACの長さをAC=6とする。


とあります。
四角形ABCDがあって、4辺のうち3辺の長さが与えられていますね。

AB=5,BC=9,CD=3です。
そして対角線はAC=6だそうです。
各辺の長さがかなり違う四角形ができました。

図を描いてみると例えばこんなふうになります。

(図はここでは省略します)

図を見てみると、いろいろと見えてくることがありますよね?

実際のセンター試験でも、図形の問題は図を描きながら考えた方が良いですよ!

そして最初の設問では、cos∠ABC,sin∠ABCの値を聞いています。

どちらも∠ABCの三角比なので、△ABCを考えます。

△ABCは、AB=5,BC=9,CA=6の三角形ですね。

そんなときはどうしたらいいでしょうか?


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆3 3辺がわかっているなら余弦定理

△ABCは3辺がわかっています。
そして、サインやコサインの値を尋ねています。

そんなときは・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!センター数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\540/月。初月無料。火・金配信。


電子書籍版はこちら →→ http://amzn.to/2oZjEzX


━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 11:12| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN