2019年10月19日

高校数学「2次関数」「最大値から式を求める」A

高校数学「2次関数」「最大値から式を求める」A

x=1のとき最大値5をとり、x=−1のときy=1となる2次関数の式を求めよ。


定義域が与えられていなくて「最大値5」ということは・・・?


解説はこのページ下


この書籍も参考にしてください。



定義域が与えられていないときの最大値は頂点になります。
言い換えれば、2次関数が上に凸のグラフになり、その頂点が最大になるわけです。

逆に、下に凸のグラフならば、頂点は最小です。

この問題では「x=1のとき最大値5」と言っているので、頂点は(1,5)です。

頂点がわかっているので、y=a(x−p)^2+qに代入して、

y=a(x−1)^2+5ですね。

このグラフが、x=−1のときy=1だから、この座標をx,yに代入すると、

 1=a(−1−1)^2+5
 1=4a+5
4a=1−5
4a=−4
 a=−1

よって、求める2次関数の式は、y=−(x−1)^2+5


関連問題
2次関数の式を求める。頂点がわかっているとき
最大値を求める


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
posted by えま at 14:00| Comment(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN