高校数学「2次関数」「切り取る線分」
■問題
2次関数y=x^2−6x+4のグラフがx軸から切り取る線分の長さを求めよ。
■考え方
「x軸から切り取る線分」とは「放物線とx軸との2つの交点の間の線分」のことです。
解き方は複数可能ですが、まずは放物線とx軸との交点を求めるのが基本です。
解説はこのページ下
この書籍も参考にしてください。
■解答解説
x軸から切り取る線分は、放物線のスプーンでx軸をザクッとやっちゃったようなイメージです。
つまりは、まずはx軸との交点を求めます。
y=x^2−6x+4にy=0を代入して、x^2−6x+4=0の2次方程式を解きます。
x=[−(−6)±√{(−6)^2−4×1×4}]/2×1
={6±√(36−16)}/2
=(6±√20)/2
=(6±2√5)/2
=3±√5
よって、y=x^2−6x+4は、x=3−√5とx=3+√5でx軸と交わります。
この2つの交点の間の線分が「切り取る線分」です。
だから、この線分の長さは、2点の座標の差になります。
3+√5−(3−√5)=2√5
関連問題
2次関数y=x^2−2axがx軸から切り取る線分の長さ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2019年10月22日
この記事へのコメント
コメントを書く
こんなヤツです
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN