◆問題
座標空間上の2点A(2,−1,3),B(3,2,1)間の距離を求めよ。
空間でも2点間の距離なら三平方の定理ですね!
↓解答解説はお知らせの下に↓
━━━━━━━━━━━━━お知らせ━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる2人以上の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
お問い合わせはこちらへどうぞ
家庭教師・塾のサイト→ http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
◆解答解説
空間上の2点間の距離は、要するに「直方体の対角線」と同じになります。
x方向にどれだけ移動するか?・・・x2−x1
y方向にどれだけ移動するか?・・・y2−y1
z方向にどれだけ移動するか?・・・z2−z1
が、直方体の3辺の長さになりますね。
だから、
d=√{(x2−x1)2+(y2−y1)2+(z2−z1)2}
が直方体の対角線であり、2点間の距離だ。というわけです。
今回の問題では、A(2,−1,3),B(3,2,1)なので、
d=√{(3−2)2+(2+1)2+(1−3)2}
=√(1+9+4)
=√14
A,B間の距離は、|→AB|でもあることも頭に入れておきましょう!
◆関連問題
→AB
空間のベクトルの平行
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学