【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
リクエスト等ございましたら、mm@a-ema.comまでお知らせください。
■ 問題
2020年センター試験数2Bより
第1問
[ 2 ]
(1) tは正の実数であり、t^(1/3)−t^(-1/3)=−3を満たすとする。このとき
t^(2/3)+t^(-2/3)=[タチ]
である。さらに
t^(1/3)+t^(-1/3)=√[ツテ],t−t^(-1)=[トナニ]
である。
(2) x,yは正の実数とする。連立方程式
{log[3](x√y)≦5 ……{2}
{log[81](y/x^3)≦1 ……{3}
について考える。
X=log[3]x,Y=log[3]yとおくと、{2},{3}は
[ヌ]X+Y≦[ネノ] ……{4}
[ハ]X−Y≧[ヒフ] ……{5}
と変形できる。
X,Yが{4}と{5}を満たすとき、Yのとり得る最大の整数の値は[ヘ]である。
また、x,yが{2},{3}とlog[3]y=[ヘ]を同時に満たすとき、xのとり得る
最大の整数の値は[ホ]である。
※分数は(分子)/(分母)、xの2乗はx^2、対数の底やマーク部分の□は[ ]で
表記しています。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================
茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。
1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。
東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!
興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。
家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
■ 解説目次
◆1 分数の指数の計算
◆2 指数・対数の関係
◆3 対数の計算法則
◆4 2/3乗は1/3乗の2乗
(以下略)
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================
ブログにて様々な問題を解説しています!
■ センター数学を理由の理由まで解説するブログ
http://centermath.seesaa.net/
■ センター英語をひとつひとつ解説するブログ
http://a-emaenglish.seesaa.net/
■ 何でも解説するブログ(塾&家庭教師ブログ)
http://a-ema.seesaa.net/
紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。
★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS
------------------------------------------------------------------------
■ 解説
◆1〜3は省略します。
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
◆4 2/3乗は1/3乗の2乗
では今回の問題です。
(1) t^(1/3)−t^(-1/3)=−3という式が与えられて、t^(2/3)+t^(-2/3)の
値を聞いています。
ちなみに、t^(1/3)は、tの1/3乗です。
t^(2/3)はtの2/3乗です。
2/3乗は1/3乗を2乗したものですね。
だから、t^(1/3)−t^(-1/3)=−3の両辺を2乗してみれば、何とかなるのでは?
と考えて計算してみればOKです!
両辺を2乗すると、
{t^(1/3)−t^(-1/3)}^2=(−3)^2
普通に展開すると、
t^(2/3)−2・t^(1/3)・t^(-1/3)+t^(-2/3)=9
t^(1/3)・t^(-1/3)=1ですね。あとは普通に計算して、
(以下略)
■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■
スマホで簿記資格が取れる?!
■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■
●「簿記資格」に興味があるけど、時間もお金もない。。
という方におすすめの情報です。
現在、「スタディング 簿記講座」というオンライン講座の受講生が急増しています。
スタディング 簿記講座は、スマートフォンやPC、タブレットを使って、いつでも勉強ができるオンライン講座です。
テレビ番組のようなビデオ講座を見て、問題を解いていくだけで実力がつくという、とても便利な講座です。
スマートフォンがあれば、いつでも勉強できるので、通勤時間や休み時間など、スキマ時間を使って、資格が取れるのです。
価格も、従来の資格講座に比べて格段に安いですのでおすすめです。
簡単に無料でお試しできますので、興味のある方はどうぞ。
=> スタディング 簿記講座のキャンペーン情報や無料お試しはコチラ!
https://px.a8.net/svt/ejp?a8mat=35QFIF+21TRSI+1TDM+6P4K3
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
解説の続き・解答や公式一覧などは・・・
【高校数学】読むだけでわかる!共通テスト数学の考え方
http://www.mag2.com/m/0001641004.html
数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
発行者 江間淳(EMA Atsushi)
mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
無断転載・引用を禁じます。
=========================== お知らせ3 ===============================
5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!
★【高校数学】読むだけでわかる!数学1Aの考え方
http://pmana.jp/pc/pm586.html
【高校数学】読むだけでわかる!数学2Bの考え方
http://pmana.jp/pc/pm743.html
【高校数学】読むだけでわかる!数学3の考え方
http://pmana.jp/pc/pm730.html
★【高校英語】センター試験徹底トレーニング
http://pmana.jp/pc/pm588.html
★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
http://pmana.jp/pc/pm603.html
【高校物理】読むだけでわかる!物理基礎・物理の考え方
http://pmana.jp/pc/pm729.html
【中学5科】高校入試の重要ポイント
http://pmana.jp/pc/pm707.html
ラベル:数学