2022年02月22日

本日配信のメルマガ。2022年共通テスト数学2B第1問[1] 完成

本日配信のメルマガでは、2022年大学入試共通テスト数学2B第1問[1]を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2022年共通テスト数2Bより

第1問

[2] a,bは正の実数であり、a≠1,b≠1を満たすとする。太郎さんは
log[a]bとlog[b]aの大小関係を調べることにした。

(1) 太郎さんは次のような考察をした。

 まず、log[3]9=[ス],log[9]3=1/[ス]である。この場合

  log[3]9>log[9]3

が成り立つ。

 一方、log[1/4][セ]=−3/2,log[セ](1/4)=−2/3である。
この場合

  log[1/4][セ]<log[セ](1/4)

が成り立つ。


(2) ここで

  log[a]b=t  ……{1}

とおく。

 (1)の考察をもとにして、太郎さんは次の式が成り立つと推測し、それが正しい
ことを確かめることにした。

  log[b]a=1/t  ……{2}

 {1}により、[ソ]である。このときにより[タ]が得られ、{2}が成り立つことが
確かめられる。

[ソ]の解答群
┌―――――――――――――――――――――――┐
|{0} a^b=t  {1} a^t=b  {2} b^a=t |
|{3} b^t=a  {4} t^a=b  {5} t^b=a |
└―――――――――――――――――――――――┘

[タ]の解答群
┌―――――――――――――――――――――――――――――┐
|{0} a=t^(1/b)  {1} a=b^(1/t)  {2} b=t^(1/a) |
|{3} b=a^(1/t)  {4} t=b^(1/a)  {5} t=a^(1/b) |
└―――――――――――――――――――――――――――――┘


(3) 次に、太郎さんは(2)の考察をもとにして

  t>1/t ……{3}

を満たす実数t(t≠0)の値の範囲を求めた。

┌―太郎さんの考察―――――――――――――――――――――――――┐
| t>0ならば、{3}の両辺にtを掛けることにより、t^2>1を得る。 |
|このようなt(t>0)の値の範囲は1<tである。          |
| t<0ならば、{3}の両辺にtを掛けることにより、t^2<1を得る。 |
|このようなt(t<0)の値の範囲は−1<t<0である。       |
└―――――――――――――――――――――――――――――――――┘

この考察により、{3}を満たすt(t≠0)の値の範囲は

  −1<t<0,1<tであることがわかる。

 ここで、aの値を一つ定めたとき、不等式

  log[a]b>log[b]a ……{4}

を満たす実数b(b>0,b≠1)の値の範囲について考える。

 {4}を満たすbの値の範囲はa>1のときは[チ]であり、0<a<1のときは
[ツ]である。

[チ]の解答群
┌―――――――――――――――――――――――――――――――┐
|{0} 0<b<1/a,1<b<a  {1} 0<b<1/a,a<b |
|{2} 1/a<b<1,1<b<a  {3} 1/a<b<1,a<b |
└―――――――――――――――――――――――――――――――┘

[ツ]の解答群
┌―――――――――――――――――――――――――――――――┐
|{0} 0<b<a,1<b<1/a  {1} 0<b<a,1/a<b |
|{2} a<b<1,1<b<1/a  {3} a<b<1,1/a<b |
└―――――――――――――――――――――――――――――――┘


(4) p=12/13,q=12/11,r=14/13とする。

 次の{0}〜{3}のうち、正しいものは[テ]である。

[テ]の解答群
┌―――――――――――――――――――――――――――――――┐
|{0} log[p]q>log[q]pかつlog[p]r>log[r]p   |
|{1} log[p]q>log[q]pかつlog[p]r<log[r]p   |
|{2} log[p]q<log[q]pかつlog[p]r>log[r]p   |
|{3} log[p]q<log[q]pかつlog[p]r<log[r]p   |
└―――――――――――――――――――――――――――――――┘


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 分数は累乗根・マイナスは逆数
 ◆2 指数・対数の関係
 ◆3 対数の計算法則
 ◆4 log[a]c=bはa^b=c

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説


◆1〜3は省略します。


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆4 log[a]c=bはa^b=c

では今回の問題です。
まずは対数の値を求めます。

◆2でも触れた「★a^b=cならばlog[a]c=b」という指数・対数の関係を
使います。

log[3]9は、3を9にするには何乗か?なので、2乗ですね。つまり、

log[3]9=2

log[9]3は、9を3にするには何乗か?なので、1/2乗ですね。
√9=3であり、平方根は1/2乗です。だから、


(以下略)


■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■
スマホで簿記資格が取れる?!
■□━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━□■


●「簿記資格」に興味があるけど、時間もお金もない。。

という方におすすめの情報です。

現在、「スタディング 簿記講座」というオンライン講座の受講生が急増しています。

スタディング 簿記講座は、スマートフォンやPC、タブレットを使って、いつでも勉強ができるオンライン講座です。

テレビ番組のようなビデオ講座を見て、問題を解いていくだけで実力がつくという、とても便利な講座です。

スマートフォンがあれば、いつでも勉強できるので、通勤時間や休み時間など、スキマ時間を使って、資格が取れるのです。

価格も、従来の資格講座に比べて格段に安いですのでおすすめです。

簡単に無料でお試しできますので、興味のある方はどうぞ。

=> スタディング 簿記講座のキャンペーン情報や無料お試しはコチラ!
https://px.a8.net/svt/ejp?a8mat=35QFIF+21TRSI+1TDM+6P4K3

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]

こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN