2022年12月30日

本日配信のメルマガ。2022年共通テスト数学2B第2問[1]

本日配信のメルマガでは、2022年大学入試共通テスト数学2B第2問[1]を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2022年共通テスト数2Bより

第2問

[1] aを実数とし、f(x)=x^3−6ax+16とおく。

(1) y=f(x)のグラフの概形は

  a=0のとき、[ア]
  a<0のとき、[イ]

である。

[ア],[イ]については、最も適当なものを、次の{0}〜{5}のうちから一つずつ
選べ。ただし、同じものを繰り返し選んでもよい。

グラフはこちら→http://www.a-ema.com/img/2022math2b2a.png


(2) a>0とし、pを実数とする。座標平面上の曲線y=f(x)と直線y=pが
3個の共有点をもつようなpの値の範囲は[ウ]<p<[エ]である。

 p=[ウ]のとき、曲線y=f(x)と直線y=pは2個の共有点をもつ。それらの
x座標をq,r(q<r)とする。曲線y=f(x)と直線y=pが点(r,p)で
接することに注意すると

  q=[オカ]√[キ]・a^(1/2),r=√[ク]・a^(1/2)

と表せる。

[ウ],[エ]の解答群(同じものを繰り返し選んでもよい。)
┌――――――――――――――――――――――――――――――┐
|{0} 2√2・a^(3/2)+16  {1} −2√2・a^(3/2)+16 |
|{2} 4√2・a^(3/2)+16  {3} −4√2・a^(3/2)+16 |
|{4} 8√2・a^(3/2)+16  {5} −8√2・a^(3/2)+16 |
└――――――――――――――――――――――――――――――┘


(3) 方程式f(x)=0の異なる実数解の個数をnとする。次の{0}〜{5}のうち、
正しいものは[ケ]と[コ]である。

[ケ],[コ]の解答群(解答の順序は問わない。)

┌―――――――――――――――――――――――――┐
|{0} n=1ならばa<0  {1} a<0ならばn=1 |
|{2} n=2ならばa<0  {3} a<0ならばn=2 |
|{4} n=3ならばa>0  {5} a>0ならばn=3 |
└―――――――――――――――――――――――――┘


※分数は(分子)/(分母)、xの2乗はx^2、マーク部分の□は[ ]で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ1 ===============================

茨城県水戸市、常陸太田市、東海村の個別指導教室
「AE個別学習室(えまじゅく)」では、生徒募集をしています。

1クラス4人までの少人数で、経験豊富なプロ講師の授業が受けられます。
女性講師も指定可能です。対象は小学生〜高校生・浪人生。社会人も歓迎します!
ご自分でお子さんを指導したい親御さんへの個別セミナーも行います。

東海村教室では、全国大会経験者による指導が受けられる卓球教室の生徒も
同時募集しています。
勉強と卓球両方やる生徒さんには優待もあります!

興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 導関数は傾きを表す
 ◆2 極値では導関数の値(=微分係数)が0
 ◆3 定数項はy軸上の点
 ◆4 y'=0は極値を表す

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS


------------------------------------------------------------------------

■ 解説


◆1,2は省略します。


 ◆3 定数項はy軸上の点

では今回の問題です。
y=f(x)のグラフについての設問です。

「f(x)=x^3−6ax+16」であり、まずはa=0の場合を考えます。

この場合の関数の式は「y=x^3+16」ですね。

これはy=x^3に16を足しただけなので、y=x^3のグラフを上に16移動した
ものです。定数項が16だから、y軸上の16の点を通る。と考えてもよいです。

y=x^3のグラフは全体として右上がりで、原点で接線の傾きがゼロとなるので、
1番が適切ですね。

よって、[ア]=1


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆4 y'=0は極値を表す

次はa<0のときです。

グラフの形を考えるときは、まずは微分して極値のときのxの値を求めるのが王道
です。

y'=3x^2−6a

a<0なので、このy'の値は常にプラスになります。
つまり接線の傾きは・・・


(以下略)


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -


解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]


この記事へのトラックバック
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN