昨日の高校生の授業から、1問ピックアップします。
◆問題
(a+b+2)(a−b−2)を展開せよ。
これも、ひたすらかけていってももちろんOKですが、ちょっと組み合わせを考えると楽になります。
↓解き方・考え方の習得にはこの書籍もおすすめです↓
◆解答解説
(a+b+2)(a−b−2)
式が似てるけど、少し違うときは、共通部分ができるように、何かしら手を加える。と考えます。
例えば、a+bとa−bは似ていますが、符号が片方違うので、一つの文字で置き換えることはできません。
b+2と−b−2に着目してみると、符号が両方違うので、ダメかな・・・と思ってしまう人も多いと思いますが、両方違うならむしろ好都合です。
マイナスでくくると、両方の符号が変わるので、同じ部分を作ることができます。
つまり、
(a+b+2)(a−b−2)
=(a+b+2){a−(b+2)}
このように直すことができます。
こうすると、b+2が共通なので、置き換えを使うことができますね!
b+2=Aとすると、
=(a+A)(a−A)
=a2−A2
=a2−(b+2)2
=a2−(b2+4b+4)
=a2−b2−4b−4
置き換えさえできれば、特に問題ないと思います!
数と式まとめ
江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学