2023年06月30日

本日配信のメルマガ。2023年共通テスト数学1A第5問

本日配信のメルマガでは、2023年大学入試共通テスト数学1A第5問を解説します。


【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html


リクエスト等ございましたら、mm@a-ema.comまでお知らせください。


■ 問題

2023年共通テスト数1Aより

第5問

(1) 円Oに対して、次の[手順1]で作図を行う。

┌―[手順1]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。|
|    円Oと直線lとの交点をA,Bとし、線分ABの中点Cをとる。|
|(Step 2) 円Oの周上に、点Dを∠CODが鈍角となるようにとる。  |
|    直線CDを引き、円Oとの交点でDとは異なる点をEとする。 |
|(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点を|
|    Fとし、円Oとの交点でDとは異なる点をGとする。     |
|(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。|
└―――――――――――――――――――――――――――――――――┘

参考図→http://www.a-ema.com/img/center2023math1a5.png


 このとき、直線lと点Dの位置によらず、直線EHは円Oの接線である。
このことは、次の[構想]に基づいて、後のように説明できる。

┌―[構想]―――――――――――――――――――――――――――――┐
| 直線EHが円Oの接線であることを証明するためには、       |
|∠OEH=[アイ]°であることを示せば良い。            |
└―――――――――――――――――――――――――――――――――┘

 [手順1]の(Step 1)と(Step 4)により、4点C,G,H,[ウ]は同一円周上に
あることがわかる。よって、∠CHG=[エ]である。一方、点Eは円Oの周上に
あることことから、[エ]=[オ]がわかる。よって、∠CHG=[オ]であるので、
4点C,G,H,[カ]は同一円周上にある。この円が点[ウ]を通ることにより、
∠OEH=[アイ]°を示すことができる。

[ウ]の解答群
┌―――――――――――――――――――――――┐
|{0} B  {1} D  {2} F  {3} O     |
└―――――――――――――――――――――――┘

[エ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠AFC {1} ∠CDF {2} ∠CGH {3} ∠CBO {4} ∠FOG|
└――――――――――――――――――――――――――――――――――┘

[オ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠AED {1} ∠ADE {2} ∠BOE {3} ∠DEG {4} ∠EOH|
└――――――――――――――――――――――――――――――――――┘

[カ]の解答群
┌―――――――――――――――――――――――┐
|{0} A  {1} D  {2} E  {3} F     |
└―――――――――――――――――――――――┘


(2) 円Oに対して、(1)の[手順1]とは直線lの引き方を変え、次の[手順2]で
作図を行う。

┌―[手順2]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと共有点をもたない直線lを引く。中心Oから直線lに |
|    垂直な直線を引き、直線lとの交点をPとする。       |
|(Step 2) 円Oの周上に、点Qを∠POQが鈍角となるようにとる。直線|
|    PQを引き、円Oとの交点でQとは異なる点をRとする。   |
|(Step 3) 点Qを通り直線OPに垂直な直線を引き、円Oとの交点でQ |
|    とは異なる点をSとする。                 |
|(Step 4) 点Sにおける円Oの接線を引き、直線lとの交点をTとする。|
└―――――――――――――――――――――――――――――――――┘

 このとき、∠PTS=[キ]である。

 円Oの半径が√5で、OT=3√6であったとすると、3点O,P,Rを通る
円の半径は([ク]√[ケ])/[コ]であり、RT=[サ]である。

[キ]の解答群
┌――――――――――――――――――――――――――――――――――┐
|{0} ∠PQS {1} ∠PST {2} ∠QPS {3} ∠QRS {4} ∠SRT|
└――――――――――――――――――――――――――――――――――┘


※分数は(分子)/(分母)、xの2乗はx^2で、マーク部分の□は[ ]、マル1は{1}
で表記しています。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★★★
★                                  ★
★    茨城県水戸市、常陸太田市の個別指導教室           ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。    ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!    ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。     ★
★                                  ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、2人〜4人の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、まずは mm@a-ema.com までお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

■ 解説目次

 ◆1 平面図形の性質は、中学の内容も重要!
 ◆2 接線と半径は垂直に交わる

(以下略)

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
=========================== お知らせ2 ===============================

ブログにて様々な問題を解説しています!

■ 共通テスト・センター数学を理由の理由まで解説するブログ
   http://centermath.seesaa.net/

■ 共通テスト・センター英語をひとつひとつ解説するブログ
   http://a-emaenglish.seesaa.net/

■ 何でも解説するブログ(塾&家庭教師ブログ)
   http://a-ema.seesaa.net/


紙の書籍、電子書籍もご利用ください。
中学・高校の英語・数学の書籍を出版しています。

★江間淳(えまあつし)の書籍一覧 → http://amzn.to/2lnKZdS

------------------------------------------------------------------------

■ 解説

 ◆1 平面図形の性質は、中学の内容も重要!

2023年共通テストも数学1A第5問は平面図形の性質が出題されました。

センター試験では、この問題では、主にメネラウスの定理や方べきの定理を使う
問題が出題されていましたが、共通テストでは、性質自体は中学レベルで、設定が
ややこしい問題が出題される傾向になってきたようです。

・相似な図形
・円と接線
・円に内接する四角形
・三角形の重心、内心、外心
・二等辺三角形、正三角形
・平行線の性質

特にこれらの性質や定理が使われ割合が増えたと思います。

皆さんは、これらの用語を見て、「アレだな!」と思い出すことができましたか?
もし怪しい場合は、教科書や参考書などを見て、再確認しておくことをおすすめ
します!


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

 ◆2 接線と半径は垂直に交わる

では今回の問題です。

(1) 円Oに対して、次の[手順1]で作図を行う。

┌―[手順1]――――――――――――――――――――――――――――┐
|(Step 1) 円Oと異なる2点で交わり、中心Oを通らない直線lを引く。|
|    円Oと直線lとの交点をA,Bとし、線分ABの中点Cをとる。|
|(Step 2) 円Oの周上に、点Dを∠CODが鈍角となるようにとる。  |
|    直線CDを引き、円Oとの交点でDとは異なる点をEとする。 |
|(Step 3) 点Dを通り直線OCに垂直な直線を引き、直線OCとの交点を|
|    Fとし、円Oとの交点でDとは異なる点をGとする。     |
|(Step 4) 点Gにおける円Oの接線を引き、直線lとの交点をHとする。|
└―――――――――――――――――――――――――――――――――┘

参考図→http://www.a-ema.com/img/center2023math1a5.png

このように図を描くと、「直線lと点Dの位置によらず、直線EHは円Oの接線」
になります。

まずは、接線の性質を利用して、このことを証明していきます。
円と接線の性質のひとつに、「接線と接点に引いた半径は垂直に交わる」という
ものがあります。

つまり・・・


つづく


- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

解説の続き・解答や公式一覧などは・・・

【高校数学】読むだけでわかる!共通テスト数学の考え方
 http://www.mag2.com/m/0001641004.html

数学1A2B本試験の全問題を詳細に解説。\550/月。初月無料。火・金配信。

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
          発行者 江間淳(EMA Atsushi)
 mm@a-ema.com http://www.a-ema.com/k/ https://twitter.com/A_EMA_RYU
 youtube EMA Atsushiチャンネル:https://www.youtube.com/@emajuku
------------------------------------------------------------------------
                        無断転載・引用を禁じます。


=========================== お知らせ3 ===============================

5万人以上の利用実績がある勉強アプリ。英語・数学・化学など。
★印のものはGooglePlayでも公開中です。「江間淳」で検索してみてくださいね!

★【高校数学】読むだけでわかる!数学1Aの考え方
 http://pmana.jp/pc/pm586.html

【高校数学】読むだけでわかる!数学2Bの考え方
 http://pmana.jp/pc/pm743.html

【高校数学】読むだけでわかる!数学3の考え方
 http://pmana.jp/pc/pm730.html

★【高校英語】センター試験徹底トレーニング
 http://pmana.jp/pc/pm588.html

★【高校化学】読むだけでわかる!理論・無機・有機化学の考え方
 http://pmana.jp/pc/pm603.html

【高校物理】読むだけでわかる!物理基礎・物理の考え方
 http://pmana.jp/pc/pm729.html

【中学5科】高校入試の重要ポイント
 http://pmana.jp/pc/pm707.html
ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | メルマガ | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]


この記事へのトラックバック
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN