★背理法(reductio ad absurdum)
ある命題が偽だと仮定すると矛盾が生じることを示し、その命題が真であることを証明する方法。
例えば「√2が無理数であることを背理法を使って証明せよ」という問題は、背理法の代表的な問題ですね。
詳しくは別記事に掲載しますが、基本的な方針としては、
√2が有理数であると仮定する
→有理数ならば分数で表すことができる
→√2が分数で表せるとすると、矛盾が生じる
→√2は有理数でない
→√2は無理数である
このようになります。
◆関連項目
真偽の判断
命題と集合まとめ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!生徒募集中です!
プロ家庭教師の江間です。 AE個別学習室
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学