2024年04月22日

高校数学「空間のベクトル」yz平面に接する球

高校数学「空間のベクトル」yz平面に接する球

◆問題

3点A(2,3,1),B(3,−2,2),C(−2,5,3)について次の問いに答えよ。

(1) △ABCの重心Gの座標を求めよ。

(2) Gを中心とする半径3の球の方程式を求めよ。

(3) Aを中心としてyz平面に接する球の方程式を求めよ。


↓(3)の解答解説はお知らせの下↓


━━━━━━━━━━━━━お知らせ━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★   茨城県水戸市、常陸太田市の個別指導教室          ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。

 授業料が最大で40%引きになる2人以上の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 お問い合わせはこちらへどうぞ

 家庭教師・塾のサイト→ http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆解答解説

球の方程式は、

★ (x−a)2+(y−b)2+(z−c)2=r2

です。
中心はAと決まっているので、あとは半径を求めます。

A(2,3,1)からyz平面までの距離は、x座標に等しく2ですね。
つまり、r=2です。

というわけで、

(x−2)2+(y−3)2+(z−1)2=22
(x−2)2+(y−3)2+(z−1)2=4

ですね!


最初に戻る→(1) △ABCの重心Gの座標


◆関連問題
平面上の円の場合
ベクトルまとめ


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]


この記事へのトラックバック
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN