2024年06月13日

高校数学「図形と方程式」直線y=2x+4上の点Qと点A(−5,2)との中点Pの軌跡

高校数学「図形と方程式」直線y=2x+4上の点Qと点A(−5,2)との中点Pの軌跡

◆問題
点Qが直線y=2x+4上を動くとき、点A(−5,2)と点Qを結ぶ線分AQの中点Pの軌跡を求めよ。


軌跡に関する少し難しい問題です。
定期テストレベルなら、このくらいが解ければだいたいOKだと思います。


↓解答解説はお知らせの下に↓

━━━━━━━━━━━━━お知らせ━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★   茨城県水戸市、常陸太田市の個別指導教室          ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。

 授業料が最大で40%引きになる2人以上の同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 お問い合わせはこちらへどうぞ

 家庭教師・塾のサイト→ http://www.a-ema.com/

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

◆解答解説

軌跡の問題では、基本的には点Pを(x,y)とおきます。
そして点P以外に移動する点があれば、それも文字で置きます。
例えば、Q(s,t)とするのが標準的だと思います。

今回の問題も、この置き方でやっていきます。

Qはy=2x+4上の点なので、この直線の式に代入することができますね。
つまり、t=2s+4です。
ということは、Q(s,t)=(s,2s+4)と表すことができます。

点PはAQの中点なので、普通に中点の公式にしたがって式を立てます。

x=(s−5)/2,y=(2s+4+2)/2=(2s+6)/2=s+3

求めるのはPの軌跡、つまり、xとyの関係式です。
だから、これら2つの式を合成して、sを消去すればOK!と考えます。

 x=(s−5)/2
2x=s−5
−s=−2x−5
 x=2x+5

これをyの式に代入すると、

y=2x+5+3
y=2x+8

よって求める軌跡は、直線y=2x+8


◆関連項目
2点O(0,0),A(6,0)からの距離の比が2:1である点Pの軌跡
軌跡の立式の仕方
図形と方程式まとめ


−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−


ラベル:数学
posted by えま at 17:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]


この記事へのトラックバック
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN