◆問題
点A(−1,3)、直線l:2x+3y=0に関して、次の直線の方程式を求めよ。
(1) Aを通りlに平行な直線
(2) Aを通りlに垂直な直線
↓解答解説はお知らせの下に↓
━━━━━━━━━━━━━お知らせ━━━━━━━━━━━━━━━━━
★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★ ★
★ 茨城県水戸市、常陸太田市の個別指導教室 ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。 ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します! ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。 ★
★ ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★
えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
授業料が最大で40%引きになる2人以上の同時指導も好評です!
今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。
お問い合わせはこちらへどうぞ
家庭教師・塾のサイト→ http://www.a-ema.com/
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
◆解答解説
いわゆる「平行条件」「垂直条件」を考えます。
もとの直線の傾きを使って、求める直線の傾きを表すことができます。
平行条件は「傾きが等しい」つまり「m=m'」です。
垂直条件は「傾きを掛けたら−1」つまり「mm'=−1」です。
というわけで、まずはもとの直線の式を変形してみましょう!
2x+3y=0
3y=−2x
y=−(2/3)x
つまり、m=−2/3です。
今回は垂直な直線を求めたいので、垂直条件mm'=−1を使って傾きを求めます。
求める直線の傾きをm'とすると、(−2/3)・m'=−1より、m'=3/2です。
通る点はA(−1,3)だから、直線の式y−y1=m(x−x1)に代入して、
y−3=(3/2){x−(−1)}
y=(3/2))x+3/2+3
y=(3/2)x+9/2
これで終わりでもちろんOKですが、ax+by+c=0の形に直せば以下のようになります。
2y=3x+9
−3x+2y−9=0
3x−2y+9=0
(1)に戻る→Aを通りlに平行な直線
◆関連項目
平行条件、垂直条件
図形と方程式まとめ
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
20年以上の実績。全学年、英・数・理をはじめ全教科対応
最高級の指導を提供します!メール添削も好評です!
プロ家庭教師の江間です。 AE個別学習室(えまじゅく)
http://www.a-ema.com/k/ http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学