2024年10月08日

高校数学「指数・対数」不等式2x+1>3x

高校数学「指数・対数」不等式2x+1>3x

■ 問題

次の不等式を解け。

x+1>3x


解答解説はこのページ下に


★★ お知らせ ★★


★★★★★★★「AE個別学習室(えまじゅく)」生徒募集!★★★★★★★
★                                ★
★     茨城県水戸市、常陸太田市の個別指導教室        ★
★ 「AE個別学習室(えまじゅく)」では、生徒募集をしています。  ★
★ 対象は小学生・中学生・高校生・浪人生。社会人も歓迎します!  ★
★ オンライン授業も好評です!全国の生徒さんに対応可能です。   ★
★                                ★
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★

 えまじゅくでは、経験豊富なプロ講師のマンツーマン授業が受けられます。
 授業料が最大で40%引きになる、3人までの同時指導も好評です!
 今年も何人もの生徒さんが、第一志望(以上)の結果を出してくれました。

 興味をお持ちの方は、こちらまでお問い合わせください。

 家庭教師・塾のサイトと連絡先はここ → http://www.a-ema.com/


■ 解答解説

前回の問題と同様に、まずは両辺を対数にしてみましょう!

底を2とする対数にすると、

log2x+1>log2x

これで計算できる(変形できる)ところをやってみると、

(x+1)log22>xlog2
    x+1>xlog2

これはxについての不等式なので、xについて解きます。
移項してまとめていきましょう!

x−xlog23>−1
xlog23−x<1
x(log23−1)<1

両辺をlog23−1で割りたいところですが、その前に一応符号を確認します。
log23>log22だから、log23>1です。
ということは、log23−1>0つまり、正の数ですね。
ならば、両辺を割っても不等号の向きは変わりません。

両辺をlog23−1で割ると、

x<1/(log23−1)

これが今回の不等式の解です!


◆関連項目
1-x=2x+1のとき
対数の公式指数・対数まとめ


江間淳の書籍はこちら
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
 20年以上の実績。全学年、英・数・理をはじめ全教科対応
  最高級の指導を提供します!メール添削も好評です!

プロ家庭教師の江間です。    AE個別学習室(えまじゅく)
http://www.a-ema.com/k/     http://www.a-ema.com/j/
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
ラベル:数学
posted by えま at 21:00| Comment(0) | TrackBack(0) | 高校数学 | このブログの読者になる | 更新情報をチェックする
この記事へのコメント
コメントを書く
お名前: [必須入力]

メールアドレス: [必須入力]

ホームページアドレス:

コメント: [必須入力]


この記事へのトラックバック
こんなヤツです
名前:江間淳
年齢:41
職業:プロ家庭教師、AE個別学習室(えまじゅく)代表、翻訳者
ウェブサイトURL:http://www.a-ema.com/
メールアドレス:j@a-ema.com
一言:アプリ、メルマガ、電子書籍提供中です。アマゾンやGooglePlayで「江間淳」で検索!
江間淳の書籍一覧 → http://amzn.to/2m9LTvN